Polar-Direct-Drive Shock-Timing Measurements at the National Ignition Facility

T. R. Boehly **University of Rochester** Laboratory for Laser Energetics

Division of Plasma Physics Savannah, GA 16-20 November 2015

Summary

Shock-timing measurements for polar-direct-drive (PDD) implosions have begun at the National Ignition Facility (NIF)

- Direct-drive-implosion adiabats are controlled with multiple 100-ps pulses ahead of the main drive
- Shock-timing measurements validate simulation predictions of the adiabat; additionally, the shock strengths are good measures of the laser-target coupling
- A fundamental issue for PDD is low-order (P2) nonuniformity created by the nonsymmetric beam configuration
- Two-axis velocity interferometer system for any reflector (VISAR) measurements provide shock timing (adiabat) and velocities at the pole and equator (P2 nonuniformity)
- This technique was successfully demonstrated on the NIF using warm CH targets; these will suffice until cryogenic D₂ targets are available

2

Collaborators

M. J. Rosenberg, M. Hohenberger, D. N. Polsin, P. B. Radha, A. Shvydky, V. N. Goncharov, D. R. Harding, S. P. Regan, T. C. Sangster, M. C. Gregor, and C. A. McCoy

> University of Rochester Laboratory for Laser Energetics

P. M. Celliers, D. E. Fratanduono, and S. N. Dixit

Lawrence Livermore National Laboratory

The adiabat of an ICF* implosion is "set" by a series of shock waves that precompress the shell and fuel before they implode

E24581

*ICF: inertial confinement fusion

The adiabat of an ICF implosion is "set" by a series of shock waves that precompress the shell and fuel before they implode

ROCHESTER

E24581a

Motivation

PDD* is an alternative approach to achieving ignition on the NIF

NIF beams configured for indirect drive (arranged around the poles)

M. Hohenberger et al., Phys. Plasmas <u>22</u>, 056308 (2015).

Shock-timing measurements use VISAR to detect multiple converging shock waves within a spherical capsule

The two-axis VISAR/SOP* provide shock-timing and strength measurements at the equator and pole

*Streaked optical pyrometer

N151025-003

Shock velocity at the equator was higher than at the pole, suggesting less PDD compensation is required

Simultaneous mergers at the pole and the equator are a coincidence.

N151025-003

Both shock-velocity profiles integrate to 150 μ m (the shell thickness) at their breakout times

Displacement (µm)

A pulse with a lower-power first pulse reduced the first shock velocity and moved the merge time earlier

Second Shot

Power for equatorial beams was similar as were the resulting velocities

Second Shot

Pulses with a lower-power first pulse reduced the first shock velocity and changed the shock merge time

N151026-002

Pulses with a lower-power first pulse reduced the first shock velocity and changed the shock merge time

Two shots on the NIF demonstrated the use of multi-axis VISAR to measure shock timing in PDD implosion geometry

- Shot 1: equal picket pulses
- Shot 2: lower power of first pulse on inner beams only

E24726

Preliminary simulations show fair agreement with results; inclusion of actual power balance is needed

Shock-timing measurements for polar-direct-drive (PDD) implosions have begun at the National Ignition Facility (NIF)

- Direct-drive-implosion adiabats are controlled with multiple 100-ps pulses ahead of the main drive
- Shock-timing measurements validate simulation predictions of the adiabat; additionally, the shock strengths are good measures of the laser-target coupling
- A fundamental issue for PDD is low-order (P2) nonuniformity created by the nonsymmetric beam configuration
- Two-axis velocity interferometer system for any reflector (VISAR) measurements provide shock timing (adiabat) and velocities at the pole and equator (P2 nonuniformity)
- This technique was successfully demonstrated on the NIF using warm CH targets; these will suffice until cryogenic D₂ targets are available

17