

ROCHESTER

TC11618

The Three-Dimensional Hydrocode DEC3D yith Multigroup Radiation Transport

University of Rochester, Laboratory for Laser Energetics

ROCHESTER

TC11617

A. Bose et al., GO5.00006, this conference.

K. M. WOO, R. EPSTEIN, J. A. DELETTREZ, A. BOSE, R. BETTI, AND K. S. ANDERSON

The 3-D hydrocode *DEC3D* has been developed to study the deceleration phase of inertial confinement fusion (ICF) implosions

- The 2-D Eulerian hydrocode *DEC2D** has been extended to 3-D and is integrated with a multigroup radiation-transport package
- Numerical results from the multigroup radiation-transport package show good agreement with 1-D LILAC simulations
- The parallel multigroup radiation transport integrated in *DEC2D* shows efficient computation
- The *DEC3D* simulates Rayleigh–Taylor (RT) instability in the deceleration phase

OCHESTER

Hydro equations are solved in terms of moving-mesh variables

• DEC3D is constructed on a moving mesh

$$\xi_i(\mathbf{x}_i, t) = \frac{\mathbf{x}_i}{\mathbf{R}(t)}$$
 and $\partial_t = \partial_t - \sum_{i=1}^3 \frac{\mathbf{x}_i}{\mathbf{R}^2} \dot{\mathbf{R}} \partial_{\xi_i}$ and $\partial_{\mathbf{x}_i} = \frac{1}{\mathbf{R}} \partial_{\xi_i}$

 Hydrodynamic equations expressed in terms of moving-mesh variables

$$R^{2} \partial_{t} (\rho) - \mathbf{x}_{i} \dot{R} \partial_{\xi_{i}} (\rho) + R \partial_{\xi_{i}} (\rho U_{i}) = 0$$

$$R^{2} \partial_{t} (\rho U_{j}) - \mathbf{x}_{i} \dot{R} \partial_{\xi_{i}} (\rho U_{j}) + R \partial_{\xi_{i}} (\rho U_{i} U_{j} + \delta_{ij} P) = 0$$

$$R^{2} \partial_{t} (\varepsilon) - \mathbf{x}_{i} \dot{R} \partial_{\xi_{i}} (\varepsilon) + R \partial_{\xi_{i}} [U_{i} (\varepsilon + P)] = 0$$

+

Hydrodynamics

UR

$$\begin{aligned} \mathbf{R}^{2}\partial_{t}\left(\mathbf{P}_{e}^{3/5}\right) &- \mathbf{x}_{i}\,\dot{\mathbf{R}}\partial_{\xi_{i}}\left(\mathbf{P}_{e}^{3/5}\right) + \mathbf{R}\partial_{\xi_{i}}\left(\mathbf{P}_{e}^{3/5}\,\boldsymbol{U}_{i}\right) = \mathbf{0}\\ \mathbf{R}^{2}\partial_{t}\left(\boldsymbol{\varepsilon}_{\alpha}^{3/5}\right) &- \mathbf{x}_{i}\,\dot{\mathbf{R}}\partial_{\xi_{i}}\left(\boldsymbol{\varepsilon}_{\alpha}^{3/5}\right) + \mathbf{R}\partial_{\xi_{i}}\left(\boldsymbol{\varepsilon}_{\alpha}^{3/5}\,\boldsymbol{U}_{i}\right) = \mathbf{0}\end{aligned}$$

The radiation transport is operator-splitted from the hydrodynamics, thermal, and alpha transport

 Hydro equations are solved by the MacCormack scheme; the ideal gas equation of state (EOS) is used

- Group opacity is taken astrophysical opacity table; The radiation diffusion is solved implicitly using the flux-limited diffusion coefficient
- Thermal and alpha diffusions are solved by the Crank–Nicolson scheme
- A one-group alpha transport is solved

The diffusion equation is solved implicitly to maintain stability

• Equations of radiation transport and radiation-material coupling

$$\partial_t \phi_{g} + \vec{\nabla} \cdot \left(\vec{U} \phi_{g} \right) + P_g \vec{\nabla} \cdot \vec{U} = c\kappa_g \left(b_g T_e^4 - \phi_g \right) + \vec{\nabla} \cdot D_g \vec{\nabla} \phi_g$$
$$\rho C_V \partial_t T_e = \sum_g c\kappa_g \left(\phi_g - b_g T_e^4 \right)$$

 The advection and radiation-pressure terms are operator-splitted from the radiation equation; the remaining diffusion equation is solved implicitly

$$\frac{\boldsymbol{\phi}_{g}^{n+1} - \boldsymbol{\phi}_{g}^{n}}{\Delta t} = \mathbf{c} \kappa_{g}^{n} \left[\boldsymbol{b}_{g} \left(\boldsymbol{T}_{e}^{n} \right)^{4} - \boldsymbol{\phi}_{g}^{n+1} \right] + \vec{\nabla} \cdot \mathbf{D}_{g}^{n} \, \vec{\nabla} \boldsymbol{\phi}_{g}^{n+1}$$

• The electron temperature is solved explicitly by summing the contribution from all the groups

$$\rho^{n} \mathbf{C}_{\mathbf{V}} \left(\frac{\mathbf{T}_{\mathbf{e}}^{n+1} - \mathbf{T}_{\mathbf{e}}^{n}}{\Delta t} \right) = \sum_{\mathbf{g}=1}^{\mathbf{G}} \mathbf{c} \kappa_{\mathbf{g}}^{n} \left[\boldsymbol{\phi}_{\mathbf{g}}^{n+1} - \boldsymbol{b}_{\mathbf{g}} \left(\mathbf{T}_{\mathbf{e}}^{n} \right)^{4} \right]$$

Numerical results of the 48-group radiation-transport package are consistent with *LILAC* simulations

TC11622

OCHESTER

*National Ignition Facility

The parallel multigroup radiation transport shows significant improvement in computation efficiency

Single time-step run time (s)	Grid number (<i>N</i> × <i>N</i>)	<i>N</i> = 200	<i>N</i> = 400	<i>N</i> = 600	<i>N</i> = 800
Parallel code	Four-group in parallel	0.075	0.19	0.39	0.67
	Other (hydro, thermal, and alpha)	0.100	0.46	1.00	1.80
	Other + four-group in parallel	0.175	0.65	1.39	2.47
Serial code	Four-group in serial	0.130	0.63	1.4	2.6
	Other (hydro, thermal, and alpha)	0.092	0.40	0.94	1.7
	Other + four-group in serial	0.222	1.03	2.34	4.3

UR

Multigroup radiation transport is integrated with parallel computation architecture

- Features of efficient parallelization
 - use the minimum communication of data during a time step
 - use nonblock communication

RT instability is mitigated by the ablative effect because of the absorption of photons on the inner shell surface

A. Bose et al., GO5.00006, this conference.

The 3-D initial velocity perturbation is set up by rotating the 2-D perturbation with sinusoidal axial variation

• Define initial velocity perturbation

 $\overrightarrow{U}_{\text{perb}} = \overrightarrow{U_0} + \overrightarrow{\delta U}_{2\text{-D}, m} \left[1 + \delta \sin(n\varphi) \right] \text{ or } \overrightarrow{U}_{\text{perb}} = \overrightarrow{U_0} + \delta \overrightarrow{U}_{2\text{-D}, m} \left[1 + \delta \sin(n\varphi) \, e^{-z/R_{\text{hs}}} \right]$

TC11621 ROCHESTER

DEC3D simulates the RT instability with axisymmetric and axial-varying perturbations

$$\vec{U}_{\text{perb}} = \vec{U_0} + \delta \vec{U}_{2-D, 20}$$

$$\overline{U}_{perb} = \overline{U_0} + \delta \overline{U}_{2-D, 20} [1 + 0.01 \sin(10 \varphi)]$$

DEC3D simulates the growth of RT instability during the deceleration phase

DEC3D simulates the 3-D structure of spikes and bubbles at stagnation

• Configuration of electron temperature at stagnation

$$\vec{U}_{\text{perb}} = \vec{U_0} + \vec{\delta U}_{2\text{-D, 10}} \\ \times \left[1 + 0.008 \sin(10\varphi) \, e^{-z/R_{\text{hs}}}\right]$$

UR

$$\overline{U}_{\text{perb}} = \overline{U_0} + \overline{\delta U}_{2\text{-}D, 20} \\ \times \left[1 + 0.008 \sin(20\varphi) \, e^{-z/R_{\text{hs}}}\right]$$

