Particle-in-Cell Modeling of Laser–Plasma Interactions in Three Dimensions

 $k_{\rm x}/k_0$

H. Wen, A. V. Maximov, R. Yan, J. Li, C. Ren, and J. F. Myatt University of Rochester Laboratory for Laser Energetics 56th Annual Meeting of the American Physical Society Division of Plasma Physics New Orleans, LA 27–31 October 2014

Summary

The hot-electron distribution near quarter-critical density has been studied by 3-D and 2-D particle-in-cell (PIC) simulations

- Two-plasmon decay (TPD), stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS) are found to coexist in 3-D PIC simulations
- In PIC simulations with laser speckles, TPD generates more hot electrons in the forward direction than in the backward direction
- Laser beams with speckles can generate more hot electrons than a plane wave because of TPD
- Collisional effects can reduce fast-electron generation by a factor of 2

PIC simulations have been performed for parameters relevant to direct-drive inertial confinement fusion (ICF) experiments

- Physical parameters (plane wave)
 - scale length $L_n = 100 \ \mu m$
 - intensity $I = 9 \times 10^{14} \, \text{W/cm}^2$
 - CH plasma, temperature $T_e = 2$ keV, $T_i = 1$ keV
 - laser propagates along the x axis
 - linear density profile from 0.21 to 0.26 n_c
 - $-\eta^{*} = 1.9$
- Numerical parameters
 - simulation box size: 400 \times 150 \times 120 c/ ω_0 (21 \times 8.4 \times 6.7 μm) for the 3-D simulation 400 \times 150 c/ ω_0 (21 \times 16 μm) for the two 2-D simulations

2-D simulations are in the *x*–*y* plane

2-D out-of-plane (SRS)

*A. Simon et al., Phys. Fluids 26, 3107 (1983).

TPD, SRS, and SBS are observed in a plane wave 3-D PIC simulation

- TPD is localized in the *x*-*y* plane
- SRS and SBS sidescattering are observed at $k_z \neq 0$
- Integrate the spectra S (k_x , k_y , k_z , ω) over k_z and $\omega \sim (0.44, 0.56)$

The growth of different instabilities in 3-D simulations can be illustrated by the time history of field components

• Steady state has been reached at the end of the simulation

In the saturation stage, TPD spectra are broader in k_{χ} than SRS spectra

• Plasma waves with a larger *k* vector can accelerate electrons with lower kinetic energy

	2-D in-plane (TPD)	2-D out-of-plane (SRS)	3-D
Net energy flux (carried by electrons above 50 keV)	12%	0.3%	7%

TC11631

Laser speckles and Coulomb collisions affect hot-electron generation

The distributions of hot electrons indicate that 2-D in-plane simulations may overestimate hot-electron generation

• The distributions of hot electrons crossing the right boundary in laser speckle simulations

	2-D in-plane (TPD)	2-D out-of-plane (SRS)	3-D
Temperature*	46 keV	21 keV	27 keV
Net energy flux	14.6%	0.8%	9.4%

TC10923a

*Fitting between 70 keV and 150 keV

TPD modes with larger *k* vectors are found in 2-D in-plane speckle simulations

• Integrate the plasma-wave spectra S (k_x , k_y , ω) over ω

Forward-going and backward-going plasma waves generate asymmetric hot electrons in 2-D in-plane simulations

Summary/Conclusions

The hot-electron distribution near quarter-critical density has been studied by 3-D and 2-D particle-in-cell (PIC) simulations

- Two-plasmon decay (TPD), stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS) are found to coexist in 3-D PIC simulations
- In PIC simulations with laser speckles, TPD generates more hot electrons in the forward direction than in the backward direction
- Laser beams with speckles can generate more hot electrons than a plane wave because of TPD
- Collisional effects can reduce fast-electron generation by a factor of 2

