Particle-in-Cell Modeling of Laser–Plasma Interactions in Three Dimensions

H. Wen, A. V. Maximov, R. Yan, J. Li, C. Ren, and J. F. Myatt
University of Rochester
Laboratory for Laser Energetics

Plasma-wave spectrum in 3-D simulation at $t = 7$ ps

Arbitrary units

56th Annual Meeting of the American Physical Society
Division of Plasma Physics
New Orleans, LA
27–31 October 2014
Summary

The hot-electron distribution near quarter-critical density has been studied by 3-D and 2-D particle-in-cell (PIC) simulations

- Two-plasmon decay (TPD), stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS) are found to coexist in 3-D PIC simulations
- In PIC simulations with laser speckles, TPD generates more hot electrons in the forward direction than in the backward direction
- Laser beams with speckles can generate more hot electrons than a plane wave because of TPD
- Collisional effects can reduce fast-electron generation by a factor of 2
PIC simulations have been performed for parameters relevant to direct-drive inertial confinement fusion (ICF) experiments

- **Physical parameters (plane wave)**
 - scale length $L_n = 100 \ \mu m$
 - intensity $I = 9 \times 10^{14} \text{ W/cm}^2$
 - CH plasma, temperature $T_e = 2 \text{ keV}$, $T_i = 1 \text{ keV}$
 - laser propagates along the x axis
 - linear density profile from 0.21 to 0.26 n_c
 - $\eta^* = 1.9$

- **Numerical parameters**
 - simulation box size: $400 \times 150 \times 120 \ c/\omega_0$ ($21 \times 8.4 \times 6.7 \ \mu m$) for the 3-D simulation
 - $400 \times 150 \ c/\omega_0$ ($21 \times 16 \ \mu m$) for the two 2-D simulations

2-D simulations are in the x–y plane

2-D out-of-plane (SRS)

2-D in-plane (TPD)

TPD, SRS, and SBS are observed in a plane wave 3-D PIC simulation

- TPD is localized in the x–y plane
- SRS and SBS sidescattering are observed at $k_z \neq 0$
- Integrate the spectra $S(k_x, k_y, k_z, \omega)$ over k_z and $\omega \sim (0.44, 0.56)$
The growth of different instabilities in 3-D simulations can be illustrated by the time history of field components.

- Steady state has been reached at the end of the simulation.
In the saturation stage, TPD spectra are broader in k_x than SRS spectra

- Plasma waves with a larger k vector can accelerate electrons with lower kinetic energy
Laser speckles and Coulomb collisions affect hot-electron generation

- Parameters (laser speckles)
 - \(L_n = 100 \, \mu m \)
 - Average \(I = 9 \times 10^{14} \, W/cm^2 \)
 - \(T_e = 3 \, \text{keV}, \, T_i = 1.5 \, \text{keV} \)
 - \(\eta = 1.3 \)

![Graph showing intensity cross section and net energy flux]

- Net energy flux

<table>
<thead>
<tr>
<th></th>
<th>No collisions</th>
<th>Collisional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speck 3-D</td>
<td>4.9%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Speck 2-D</td>
<td>0.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>out-of-plane</td>
<td>0.7%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Speck 2-D</td>
<td>1.8%</td>
<td>6.5%</td>
</tr>
<tr>
<td>in-plane</td>
<td>4.4%</td>
<td>10.2%</td>
</tr>
<tr>
<td>Plane wave 2-D</td>
<td>0.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>out-of-plane</td>
<td>0.9%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Plane wave 2-D</td>
<td>1.3%</td>
<td>1.3%</td>
</tr>
<tr>
<td>in-plane</td>
<td>4.4%</td>
<td>5.2%</td>
</tr>
</tbody>
</table>
The distributions of hot electrons indicate that 2-D in-plane simulations may overestimate hot-electron generation.

- The distributions of hot electrons crossing the right boundary in laser speckle simulations.

<table>
<thead>
<tr>
<th></th>
<th>2-D in-plane (TPD)</th>
<th>2-D out-of-plane (SRS)</th>
<th>3-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature*</td>
<td>46 keV</td>
<td>21 keV</td>
<td>27 keV</td>
</tr>
<tr>
<td>Net energy flux</td>
<td>14.6%</td>
<td>0.8%</td>
<td>9.4%</td>
</tr>
</tbody>
</table>

*Fitting between 70 keV and 150 keV
TPD modes with larger k vectors are found in 2-D in-plane speckle simulations

- Integrate the plasma-wave spectra $S(k_x, k_y, \omega)$ over ω
Forward-going and backward-going plasma waves generate asymmetric hot electrons in 2-D in-plane simulations

- Integrate the spectra $S(k_x, k_y, \omega)$ over k_y
The hot-electron distribution near quarter-critical density has been studied by 3-D and 2-D particle-in-cell (PIC) simulations

Summary/Conclusions

• Two-plasmon decay (TPD), stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS) are found to coexist in 3-D PIC simulations

• In PIC simulations with laser speckles, TPD generates more hot electrons in the forward direction than in the backward direction

• Laser beams with speckles can generate more hot electrons than a plane wave because of TPD

• Collisional effects can reduce fast-electron generation by a factor of 2