Fast-Electron Temperature Measurements in Laser-Irradiation at 10¹⁴ to 10¹⁵ W/cm²

Laser irradiance (×10¹⁴ W/cm²)

A. A. Solodov University of Rochester Laboratory for Laser Energetics 56th Annual Meeting of the American Physical Society Division of Plasma Physics New Orleans, LA 27–31 October 2014

UR 👐

The temperature of fast electrons in planar-target irradiation using UV pulses at 10¹⁴ to 10¹⁵ W/cm² was measured

- The bremsstrahlung radiation was measured by a nine-channel filter spectrometer and detected by an image plate
- Two types of experiments used the ${\rm K}_{\alpha}$ radiation from high-Z signature layers embedded in plastic
- The fast-electron temperature rose from ~15 keV to ~50 keV in the intensity range of 1 to 7 \times 10^{14} W/cm^2
- Approximately 1% laser energy to fast-electron conversion efficiency was inferred

B. Yaakobi, J. F. Myatt, C. Stoeckl, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

Long-scale-length planar CH plasmas are produced on OMEGA EP to study the generation of fast electrons by two-plasmon decay (TPD)

- Laser pulse
 - temporal profile: square, τ = 2 ns
 - beam spot size: $D \approx 1 \text{ mm}$
 - energy: up to 8 kJ in four beams
- Laser incident intensity: I = 1 to 7×10^{14} W/cm²
 - Parameters at N_{qc}
 - intensity: I_{qc} = 0.5 to 4.5 × 10¹⁴ W/cm²
 - density scale length: $L_n \leq 400 \ \mu m$
 - plasma temperature: $T_e \le 2.5$ keV
 - common wave gain:** G ~ $I_{qc} \times L_n/T_e \le 7$

^{*}B. Yaakobi et al., Phys. Plasmas <u>19</u>, 012704 (2012);

S. X. Hu et al., Phys. Plasmas 20, 032704 (2013).

^{**}D. T. Michel et al., Phys. Plasmas <u>20</u>, 055703 (2013).

Experiments were performed using plastic targets with embedded high-Z signature layers

UR

- Diagnostics
 - nine-channel filter spectrometer with image plate [hard x-ray image plate (HXIP)]
 - Cauchois-type quartz spectrometer [transmission crystal spectrometer (TCS)]
 - two identical LiF crystal spectrometers [x-ray spectrometer (XRS)]

The fast-electron temperature was inferred using K_{α} measurements from the front and back of thick Ag (Mo) targets

• The ratio of K_{α} emitted toward the front and the back decreases with increasing *T*: K_{α} is emitted deeper into the foil and therefore absorbed less on the way to the back of the target

*I. Kawrakow et al., NRC, Ottawa, Canada, NRCC Report PIRS-701 (May 2011).

Temperature was inferred from K_{α} measurements using a five consecutive-Z layer target

A nine-channel filter x-ray spectrometer with image plate (HXIP) has been developed

HXIP measurements (channels 2 to 9) indicate a singletemperature fast-electron distribution

Temperatures inferred from HXIP and K_{α} measurements agree in experiments using different targets

LLE

The fast-electron temperature rises from ~15 keV to ~50 keV in the intensity range of 1 to 7 \times 10¹⁴ W/cm².

Fast-electron temperature and x-ray yield measurements have been used to estimate the preheat energy

- ~1% of the laser energy is converted to fast electrons, confirmed using different diagnostics
- Only ~1/4 of the fast electrons will be intercepted by the compressed fuel because of a wide angular divergence*

Summary/Conclusions

The temperature of fast electrons in planar-target irradiation using UV pulses at 10¹⁴ to 10¹⁵ W/cm² was measured

- The bremsstrahlung radiation was measured by a nine-channel filter spectrometer and detected by an image plate
- Two types of experiments used the ${\rm K}_{\alpha}$ radiation from high-Z signature layers embedded in plastic
- The fast-electron temperature rose from ~15 keV to ~50 keV in the intensity range of 1 to 7 \times 10¹⁴ W/cm²
- Approximately 1% laser energy to fast-electron conversion efficiency was inferred

XRS confirms an increased signal in HXIP channel 1 resulting from $T \sim 2$ -keV x rays generated in the plasma corona

UR

