Polar Direct Drive at the National Ignition Facility

N140612-001 (CR ~ 3)

$t = 7.75$ ns

Simulation
$t = 7.5$ ns

$r = 337 \, \mu m$

$r = 332 \, \mu m$

1500×1500-μm regions

56th Annual Meeting of the American Physical Society
Division of Plasma Physics
New Orleans, LA
27–31 October 2014
Summary

Inferred trajectories from the National Ignition Facility (NIF) polar-direct-drive (PDD) implosion experiments suggest a decompressed shell

- Trajectories from both backlit and self-emission images lag simulations
- Inferred shell thickness is larger than simulated, consistent with a scenario including decompression caused by either nonuniformity or preheat
- A consistent scenario also requires a velocity reduction in addition to that predicted by the current model of cross-beam energy transfer (CBET) in DRACO
- Future experiments should clarify the effect of CBET versus that of nonuniformity in observed trajectories
Collaborators

University of Rochester
Laboratory for Laser Energetics

M. Rosenberg, H. Rinderknecht, and R. D. Petrasso

Plasma Fusion Science Center, MIT

S. LePape and A. J. MacKinnon

Lawrence Livermore National Labs
Low-adiabat PDD implosions* on the NIF are used to study energetics and preheat

- Existing x-ray drive beam profiles defocused by 1 cm are used in these implosions

\[E \sim 470 \text{ to } 660 \text{ kJ} \]
\[\alpha \sim 3 \]
\[I \sim 8 \times 10^{14} \text{ W/cm}^2 \]
\[V_{\text{imp}} = 1.8 \times 10^7 \text{ cm/s} \]
\[\text{IFAR}_{2/3} = 19 \]

M. Hohenberger, CI1.00001, this conference.
Implosion trajectory* and width of emission** region are obtained from self-emission and backlit x-ray images

Trajectories from self-emission and backlighting are delayed when compared to simulation

- Simulations include the effect of CBET* and nonlocal heat conduction**
- CBET reduces the absorption from 93% to 80% and reduces velocity by ~15% compared to a model that includes only collisional absorption

The converging shell is decompressed in the experiment relative to simulation.

- The low measured low areal density indicates decompression:
 \[\rho R_{\text{meas}} = 125 \pm 25 \text{ mg/cm}^2 \text{ (Ref. 1)} \]
 \[\rho R_{\text{sim}} = 120 \text{ to } 280 \text{ mg/cm}^2 \]

\[\text{At 6.9 ns} \]
\[\Delta_{\text{simulation}} \approx 60 \mu\text{m} \]
\[\Delta_{\text{experiment}} \approx 110 \mu\text{m} \]

\(^1\)F. H. Séguin et al., Phys. Plasmas 9, 2725 (2002); measured using wedge range filters (WRF’s).
Areal-density measurement is suggestive of decompression

- Areal density is inferred only at the equator
- ρR measurements at additional locations are important to understand the magnitude of decompression

<table>
<thead>
<tr>
<th>ρR (mg/cm2)</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
<td>120</td>
<td>280</td>
</tr>
<tr>
<td>Experiment</td>
<td>110±30</td>
<td></td>
</tr>
</tbody>
</table>
Consistent trajectories can be recovered with the assumption of reduced drive and a decompressed shell.
Nonuniformity can potentially explain the observed slowing of the self-emission trajectory

- **DRACO PDD simulation** (imprint with $\ell \leq 200$; no target roughness; no additional imprint from beam defocus)

- Nonuniformity sources will be investigated in FY15
 - cone-in-shell imprint experiments*—November and March
 - PDD implosions (smoother targets, 400-Å Au overcoat**)—January

*A. Shvydky, UO4.00008, this conference.
Summary/Conclusions

Inferred trajectories from the National Ignition Facility (NIF) polar-direct-drive (PDD) implosion experiments suggest a decompressed shell

- Trajectories from both backlit and self-emission images lag simulations
- Inferred shell thickness is larger than simulated, consistent with a scenario including decompression caused by either nonuniformity or preheat
- A consistent scenario also requires a velocity reduction in addition to that predicted by the current model of cross-beam energy transfer (CBET) in DRACO
- Future experiments should clarify the effect of CBET versus that of nonuniformity in observed trajectories