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Probing the Release of Shocked Material
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The release behavior of shocked material is critical 
to equation-of-state (EOS) measurements and 
inertial confinement fusion (ICF) target designs

Summary

E23567

•	 When	a	shock	encounters	a	lower	impedance,	it	adiabatically	
“releases”	to	lower	pressure	and	density

•	 The	impedance-match	technique	relies	on	knowing	the	behavior	
of that release

•	 National	Ignition	Facility	(NIF) shock-timing measurements 
revealed	inconsistencies	in	the	predicted	release	of	the	ablator	
into deuterium fuel

•	 The	release	of	shocked	materials	into	vacuum	is	studied	using	
266-nm	and	x-ray	probes	of	the	release	plume

•	 Data	for	shocked	polystyrene	shows	that	the	release	isentrope	
from LEOS 5111 models the velocity well
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When	a	shock	encounters	a	lower	impedance,	it	
adiabatically	“releases”	to	lower	pressure	and	density
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•	 For	weak	shocks,	release	velocity	
is ~2Up (reflected Hugoniot)

•	 Strong	shocks	produce	higher	
entropy	and	the	release	is	
described	by	the	isentrope

•	 Strong	shocks	(LMbar)	produce	
velocities >2Up



A	UV	beam	probed	the	release	plumes	of	shocked	
materials and a velocity interferometer system for any 
reflector (VISAR)	provided	initial	conditions
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When	shocked	to	~15 Mb, CH is released at ~90 km/s; 
2.7×	the	initial	particle	velocity	(Up)

E23570 D. Haberberger et al., Phys. Plasmas 21, 056304 (2014).
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Refractometry	can	provide	the	electron	density	
at	the	leading	edge	of	the	release	plume
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•	 Electron	density

– 3 × 1020 cm–3 (i1 = 0.18°, imax = 8.0°)
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VISAR provides
the initial state
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Streaked	x-ray	radiography	tracks	the	expansion	
of shocked material released from the rear surface
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The release velocity is obtained from the trajectory 
of	the	time-resolved	shadows	of	plume
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Radiography	shows	the	expansion	velocity	of	3.0	Up 
for CH shocked to 3.4 Mbar

E23575

0
0

1

2

3

4

10 20 30

Release
velocity
44 km/s

Radiography
46±4 km/s

VISAR
Initial state

3.4 Mbar

Release isentrope
(LEOS 5111)

Hugoniot

Shocked CH

40 50

Particle velocity (km/s)

P
re

ss
u

re
 (

M
b

ar
)

P
 =

 t
0
 U

s
 U

p

S18347



Summary/Conclusions
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The release behavior of shocked material is critical 
to equation-of-state (EOS) measurements and 
inertial confinement fusion (ICF) target designs

•	 When	a	shock	encounters	a	lower	impedance,	it	adiabatically	
“releases”	to	lower	pressure	and	density

•	 The	impedance-match	technique	relies	on	knowing	the	behavior	
of that release

•	 National	Ignition	Facility	(NIF) shock-timing measurements 
revealed	inconsistencies	in	the	predicted	release	of	the	ablator	
into deuterium fuel

•	 The	release	of	shocked	materials	into	vacuum	is	studied	using	
266-nm	and	x-ray	probes	of	the	release	plume

•	 Data	for	shocked	polystyrene	shows	that	the	release	isentrope	
from LEOS 5111 models the velocity well



Images	of	a	shock	in	fused	silica	show	perturbations	
in	the	optical	properties	ahead	of	the	shock
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