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Probing the Release of Shocked Material
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The release behavior of shocked material is critical 
to equation-of-state (EOS) measurements and 
inertial confinement fusion (ICF) target designs

Summary

E23567

•	 When a shock encounters a lower impedance, it adiabatically 
“releases” to lower pressure and density

•	 The impedance-match technique relies on knowing the behavior 
of that release

•	 National Ignition Facility (NIF) shock-timing measurements 
revealed inconsistencies in the predicted release of the ablator 
into deuterium fuel

•	 The release of shocked materials into vacuum is studied using 
266-nm and x-ray probes of the release plume

•	 Data for shocked polystyrene shows that the release isentrope 
from LEOS 5111 models the velocity well
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When a shock encounters a lower impedance, it 
adiabatically “releases” to lower pressure and density
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•	 For weak shocks, release velocity 
is ~2Up (reflected Hugoniot)

•	 Strong shocks produce higher 
entropy and the release is 
described by the isentrope

•	 Strong shocks (LMbar) produce 
velocities >2Up



A UV beam probed the release plumes of shocked 
materials and a velocity interferometer system for any 
reflector (VISAR) provided initial conditions
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When shocked to ~15 Mb, CH is released at ~90 km/s; 
2.7× the initial particle velocity (Up)

E23570 D. Haberberger et al., Phys. Plasmas 21, 056304 (2014).
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Refractometry can provide the electron density 
at the leading edge of the release plume
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•	 Electron density

–	 3 × 1020 cm–3 (i1 = 0.18°, imax = 8.0°)
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VISAR provides
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Streaked x-ray radiography tracks the expansion 
of shocked material released from the rear surface
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The release velocity is obtained from the trajectory 
of the time-resolved shadows of plume
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Radiography shows the expansion velocity of 3.0 Up 
for CH shocked to 3.4 Mbar
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Summary/Conclusions
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The release behavior of shocked material is critical 
to equation-of-state (EOS) measurements and 
inertial confinement fusion (ICF) target designs

•	 When a shock encounters a lower impedance, it adiabatically 
“releases” to lower pressure and density

•	 The impedance-match technique relies on knowing the behavior 
of that release

•	 National Ignition Facility (NIF) shock-timing measurements 
revealed inconsistencies in the predicted release of the ablator 
into deuterium fuel

•	 The release of shocked materials into vacuum is studied using 
266-nm and x-ray probes of the release plume

•	 Data for shocked polystyrene shows that the release isentrope 
from LEOS 5111 models the velocity well



Images of a shock in fused silica show perturbations 
in the optical properties ahead of the shock
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