

FSC

Effective ablation pressures exceeding 600 Mbar were inferred in spherical targets

- A new experimental platform on OMEGA is being used to infer the shock strength of laser-driven shocks at shock-ignition– relevant intensities
- LILAC simulations, constrained by the measured x-ray flash time, suprathermal electrons, and laser absorption, are used to infer the shock and ablation pressure
- An effective ablation pressure scaling for absorbed laser intensities ${\sim}1$ to $4\times10^{15}\,W/cm^2$ is

 P_a^{eff} (Mbar) $\approx 90 (I_{15}^{abs})^{1.4}$

The inferred effective ablation pressures meet the requirements for robust shock-ignition designs.

KOCHESTER

W. Theobald,* F. J. Marshall, D. T. Michel, W. Seka, B. Yaakobi, M. Lafon,[†] C. Stoeckl, J. A. Delettrez, A. A. Solodov, and R. Betti^{†‡}

> University of Rochester Laboratory for Laser Energetics [†]also Fusion Science Center [‡]also Department of Mechanical Engineering

> > A. Casner and C. Reverdin CEA, DAM, DIF

X. Ribeyre and A. Vallet CELIA

J. Peebles and F. N. Beg[†] University of California [†]also Fusion Science Center

M. S. Wei[†]

General Atomics †also Fusion Science Center

Demonstrating high ablation pressure is essential to validate the shock-ignition (SI) scheme*

^{*}R. Betti et al., Phys. Rev. Lett. <u>98</u>, 155001 (2007).

TC11471

^{**}K. Anderson et al., Phys. Plasmas 20, 056312 (2013).

An x-ray framing camera detects the x-ray flash at the time when the shock converges in the center

TC11472 ROCHESTER

Hydrodynamic LILAC simulations are constrained by the hard x-ray emission, laser absorption, and x-ray flash time FSE

temperature (~80-keV) suprathermal electrons.

TC11473

The shock and ablation pressure is significantly enhanced by the deposition of suprathermal electrons FSE

---- Without suprathermal electrons — With suprathermal electrons

55% of the suprathermal electron energy is deposited between the ablation front and shock front

An "effective" ablation pressure can be found via ad hoc simulations without suprathermal electrons FSE

The inferred effective ablation pressure demonstrates the generation of several hundred Mbar shocks at shock-ignition-relevant laser intensities

*S. Atzeni, Plasma Phys. Control. Fusion 42, B143 (2000).

TC11476

FSC

Effective ablation pressures exceeding 600 Mbar were inferred in spherical targets

- A new experimental platform on OMEGA is being used to infer the shock strength of laser-driven shocks at shock-ignition– relevant intensities
- LILAC simulations, constrained by the measured x-ray flash time, suprathermal electrons, and laser absorption, are used to infer the shock and ablation pressure
- An effective ablation pressure scaling for absorbed laser intensities ${\sim}1$ to $4\times10^{15}\,W/cm^2$ is

 P_a^{eff} (Mbar) $\approx 90 (I_{15}^{abs})^{1.4}$

The inferred effective ablation pressures meet the requirements for robust shock-ignition designs.

Up to 2 kJ of suprathermal electrons were generated at moderate temperatures (~80 keV)

Up to 9% conversion of total laser energy into suprathermal electrons (15% instantaneous).

*SSD: smoothing by spectral dispersion