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Direct Piston- and Shock-Timing Measurements  
in CH Using Streaked X-Ray Radiography
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Piston and shock trajectories have been tracked  
in laser-driven CH targets

Summary

• Material response to ablation was investigated using massive 
plastic targets irradiated with square or stepped laser pulses 

• Streaked x-ray radiography shows the piston and shock 
dynamics over a several nanosecond period

• Preliminary DRACO simulations based on flux-limited transport 
are in broad agreement with the shock data; the piston data lags 
predictions late in time

E23472

This platform can test laser–plasma coupling and dynamic 
compressibility models using a simple target geometry.
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Dynamic compression of materials  
is achieved using shock waves*
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A single-shock drives a sample to a point on the principal Hugoniot.
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*Ya. B. Zel’dovich and Yu. P. Raĭzer, in Physics of Shock Waves and High-Temperature Hydrodynamic    
 Phenomena, edited by W. D. Hayes and R. F. Probstein (Dover Publications, Mineola, NY, 2002).

The fluxes in density (t), 
pressure (P), and energy (f) 
must be conserved across 
the shock front

Rankine–Hugoniot
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Piston and shock trajectories are tracked using  
time-resolved x-ray radiography on OMEGA EP
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The open-drive geometry allows for radiographic 
access to the ablatively driven piston.



The piston and shock dynamics were measured  
during and after the laser drive
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• Laser: 2.5-ns square pulse, 2 × 1014 W/cm2

• At the end of the drive upiston = (37±4) nm/ns, ushock = (53±5) nm/ns

• From the Rankine–Hugoniot relations:* t = (3.5±1.1) g/cm3, P = (21±3) Mbar

*Leaky piston
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A stepped laser pulse created a time-dependent piston 
and two shocks; shock coalescence was measured
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Piston and shock trajectories were calculated based  
on synthetic x-ray radiographs generated from DRACO*
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• Two-dimensional flux-limited (f = 0.06) hydrodynamic simulations

• Assumes a monoenergetic Ti backlighter at 4.7 keV

• Cold-material opacity is assumed

Laser: 2.5-ns square pulse, 2 × 1014 W/cm2

*D. Keller et al., Bull. Am. Phys. Soc. 44, 37 (1999).
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DRACO shows broad agreement with the shock data;  
the piston data lags predictions late in time
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The DRACO-predicted piston velocities are 
higher than the experimental measurements.
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Summary/Conclusions

FSC

Piston and shock trajectories have been tracked  
in laser-driven CH targets

• Material response to ablation was investigated using massive 
plastic targets irradiated with square or stepped laser pulses 

• Streaked x-ray radiography shows the piston and shock 
dynamics over a several nanosecond period

• Preliminary DRACO simulations based on flux-limited transport 
are in broad agreement with the shock data; the piston data lags 
predictions late in time

This platform can test laser–plasma coupling and dynamic 
compressibility models using a simple target geometry.


