OMEGA EP OPAL: A Path to a 75-PW Laser System

Ultra-broadband front end (NOPA1 to 4)

0.25 J, 2.5 ns, 160 nm

OMEGA EP
Beamline 4
6.3 kJ
2.5 ns

Beamline 3
6.3 kJ
2.5 ns

Beamline 2
ps (IR) + ns (UV) pulses to EP TC

Beamline 1

Noncollinear optical parametric amplifier

EP-OPAL beamline OPCPA in DKDP

OMEGA EP target chamber (EP TC)

1.6 kJ, 20 fs

~75 PW or ~10^24 W/cm^2

D. D. Meyerhofer
University of Rochester
Laboratory for Laser Energetics

56th Annual Meeting of the American Physical Society
Division of Plasma Physics
New Orleans, LA
27–31 October 2014
The Laboratory for Laser Energetics (LLE) is exploring the possibility of using OMEGA EP to pump an ultrahigh-intensity \((10^{24} \text{ W/cm}^2)\) laser beamline

- Optical parametric chirped-pulse amplification (OPCPA)* makes it possible for solid-state lasers to pump ultrahigh-intensity lasers (tens of fs)
- Two OMEGA EP beams could be used to produce a 1.6-kJ, 20-fs (75-PW) OPCPA beamline—EP-OPAL (optical parametric amplifier line)
 - the two remaining beams would be available as ps or ns beams for target conditioning and pump–probe experiments
- EP-OPAL would extend the high-intensity frontier by two orders of magnitude

EP-OPAL’s combination of high-energy fs, ps, and ns beams would provide a unique research environment.

Collaborators

University of Rochester
Laboratory for Laser Energetics
An ultra-intense OPCPA extension to OMEGA EP would reach focused intensities approaching 10^{24} W/cm2.

This laser would be a world-class tool for fundamental science at new intensity regimes.
Noncollinear optical parametric amplifiers (NOPA’s) use a three-wave process

- Energy conservation:
 \[\hbar \omega_P \rightarrow \hbar \omega_S + \hbar \omega_I \]

- Momentum conservation: (use crystal birefringence)
 \[\hbar \mathbf{k}_P \rightarrow \hbar \mathbf{k}_S + \hbar \mathbf{k}_I \]
 “phase matching”
The OMEGA EP Laser System could be used to pump a 75-PW, 20-fs OPCPA beamline: EP-OPAL

Ultra-broadband front end (NOPA1 to 4)

NOPA5 pump

100-J KDP

6.3 kJ
2.5 ns

EP-OPAL beamline OPCPA in DKDP

6.3 kJ
1.25 kJ

2.5 ns

25 J

2.5 kJ

1.6 kJ, 20 fs

~75 PW
or
~10^{24} W/cm^2

Two OMEGA EP beamlines would be used, leaving two ns/ps beamlines for pump–probe and other experiments.
There is room in the OMEGA EP Laser Bay for EP-OPAL

- There are technical challenges
 - gratings: size and damage
 - large KDP crystals
 - fs optics damage threshold
 - dispersion management

- LLE is developing a 7-J, 15-fs beamline to address these challenges

Existing technologies would allow for 10 PW.
EP-OPAL will use a two-element focusing system to provide experimental flexibility

- $f/4.6$ off-axis parabola outside the target chamber
- Elliptical plasma mirror inside the target chamber*
 - part of the experimental design/target
 - disposable
 - could be concave or convex to tune the $f/#$

EP-OPAL will provide a variety of beams for high-energy-density-physics research

• EP-OPAL should be able to generate a wide array of photon/particle beams, many with unprecedented fluences
 – THz
 – intense x rays up 100 keV
 – gamma ray
 – >10-GeV electron beams
 – multi-GeV proton beams (and other ions)

• The two remaining OMEGA EP beamlines can provide
 – 1- to 10-ns UV beams with up to 6.5 kJ
 – 1- to 100-ns IR beams with up to 2.5 kJ
EP-OPAL should extend K-shell extended x-ray absorption fine structure (EXAFS) measurements to high-Z materials

- Implosion-based continuum EXAFS sources* are not available above \(\sim 20 \) keV
 - researchers are developing more complicated L-shell EXAFS**
- Betatron sources show promise to produce tens of keV quasi-continuum x-ray sources†
- A spatially coherent quasi-continuum 10-keV x-ray source with a 2-J, 30-fs laser was recently demonstrated‡

‡S. Kneip et al., Nat. Phys. 6, 980 (2010).
The Laboratory for Laser Energetics (LLE) is exploring the possibility of using OMEGA EP to pump an ultrahigh-intensity (10^{24} \text{ W/cm}^2) laser beamline.

- Optical parametric chirped-pulse amplification (OPCPA)* makes it possible for solid-state lasers to pump ultrahigh-intensity lasers (tens of fs).

- Two OMEGA EP beams could be used to produce a 1.6-kJ, 20-fs (75-PW) OPCPA beamline—EP-OPAL (optical parametric amplifier line)
 - the two remaining beams would be available as ps or ns beams for target conditioning and pump-probe experiments.

- EP-OPAL would extend the high-intensity frontier by two orders of magnitude.

EP-OPAL’s combination of high-energy fs, ps, and ns beams would provide a unique research environment.

EXAFS is modulations in x-ray absorption caused by interference of the ejected electron wave function with reflections from neighboring atoms.

\[\hbar^2 k_e^2 / 2m = E_{ph} - E_K, \text{ phase is } k_e R \]

- If the two electron waves are
 - in phase: maximum absorption
 - out of phase: minimum absorption