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OMEGA EP OPAL: 
A Path to a 75-PW Laser System 
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The Laboratory for Laser Energetics (LLE) is exploring 
the possibility of using OMEGA EP to pump an ultrahigh-
intensity (1024 W/cm2) laser beamline

Summary

•	 Optical parametric chirped-pulse amplification (OPCPA)* makes it possible 
for solid-state lasers to pump ultrahigh-intensity lasers (tens of fs)

•	 Two OMEGA EP beams could be used to produce a 1.6-kJ, 20-fs (75-PW) 
OPCPA beamline—EP-OPAL (optical parametric amplifier line)

–	 the two remaining beams would be available as ps or ns beams 
for target conditioning and pump–probe experiments

•	 EP-OPAL would extend the high-intensity frontier by two orders 
of magnitude
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  *A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
**I. N. Ross et al., Opt. Commun. 144, 125 (1997). 

EP-OPAL’s combination of high-energy fs, ps, and ns beams 
would provide a unique research environment.
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An ultra-intense OPCPA extension to OMEGA EP would 
reach focused intensities approaching 1024 W/cm2 

This laser would be a world-class tool for  
fundamental science at new intensity regimes.
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Noncollinear optical parametric amplifiers (NOPA’s) 
use a three-wave process
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The OMEGA EP Laser System could be used to pump 
a 75-PW, 20-fs OPCPA beamline: EP-OPAL

E23393

Two OMEGA EP beamlines would be used, leaving two ns/ps 
beamlines for pump–probe and other experiments.
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There is room in the OMEGA EP Laser Bay for EP-OPAL
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•	 There are technical 
challenges

–	 gratings: size 
and damage

–	 large KDP crystals

–	 fs optics damage 
threshold

–	 dispersion 
management

•	 LLE is developing 
a 7-J, 15-fs beamline 
to address these 
challenges

Existing technologies 
would allow for 10 PW.



EP-OPAL will use a two-element focusing system 
to provide experimental flexibility
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Elliptical plasma
mirror concept
and demonstration*

•	 f/4.6 off-axis parabola outside 
the target chamber

•	 Elliptical plasma mirror 
inside the target chamber*

–	 part of the experimental 
design/target

–	 disposable
–	 could be concave or 

convex to tune the f/#

*A. Kon et al., J. Phys., Conf. Ser. 244, 032008 (2010). 



EP-OPAL will provide a variety of beams 
for high-energy-density-physics research
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•	 EP-OPAL should be able to generate a wide array of photon/particle 
beams, many with unprecedented fluences

–	 THz

–	 intense x rays up 100 keV

–	 gamma ray

–	 >10-GeV electron beams

–	 multi-GeV proton beams (and other ions)

•	 The two remaining OMEGA EP beamlines can provide

–	 1- to 10-ns UV beams with up to 6.5 kJ

–	 1- to 100-ps IR beams with up to 2.5 kJ



EP-OPAL should extend K-shell extended x-ray absorption 
fine structure (EXAFS) measurements to high-Z materials
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•	 Implosion-based continuum 
EXAFS sources* are not available 
above ~20 keV

–	 researchers are developing 
more complicated L-shell 
EXAFS**

•	 Betatron sources show promise 
to produce tens of keV quasi-
continuum x-ray sources†

•	 A spatially coherent 
quasi-continuum 10-keV x-ray 
source with a 2-J, 30-fs laser 
was recently demonstrated‡

Experimental betatron
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   *B. Yaakobi et al., Phys. Rev. Lett. 95, 075501 (2005).
 **Y. Ping et al., Rev. Sci. Instrum. 84, 123105 (2013).
   †E. Esarey et al., Phys. Rev. E 65, 056505 (2002).
   ‡S. Kneip et al., Nat. Phys. 6, 980 (2010).
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Summary/Conclusions

  *A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
**I. N. Ross et al., Opt. Commun. 144, 125 (1997). 

EP-OPAL’s combination of high-energy fs, ps, and ns beams 
would provide a unique research environment.

The Laboratory for Laser Energetics (LLE) is exploring 
the possibility of using OMEGA EP to pump an ultrahigh-
intensity (1024 W/cm2) laser beamline

•	 Optical parametric chirped-pulse amplification (OPCPA)* makes it possible 
for solid-state lasers to pump ultrahigh-intensity lasers (tens of fs)

•	 Two OMEGA EP beams could be used to produce a 1.6-kJ, 20-fs (75-PW) 
OPCPA beamline—EP-OPAL (optical parametric amplifier line)

–	 the two remaining beams would be available as ps or ns beams 
for target conditioning and pump–probe experiments

•	 EP-OPAL would extend the high-intensity frontier by two orders 
of magnitude
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EXAFS is modulations in x-ray absorption caused 
by interference of the ejected electron wave function 
with reflections from neighboring atoms

•	 If the two electron waves are 
	 –  in phase:  maximum absorption
 	 –  out of phase:  minimum absorption

  2m = Eph – EK, phase is keRe
2k2'

EXAFS


