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Optical Probing of Laser-Channeling 
Experiments on the OMEGA EP Laser System
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OMEGA EP experiments demonstrate the creation 
of a channel to overcritical densities in a long-scale-
length plasma

Summary

• Angular filter refractometry (AFR) makes it possible to observe the density 
modification of a channel beyond critical density (1.4 × 1021 cm–3)

• A high-intensity (>1018 W/cm2) laser evacuates a conical-shaped cavity 
with ~65% lower density than the background density

• A 100-ps, 1-kJ laser pulse produced a channel beyond critical, allowing 
for the efficient transmission of a high-intensity (I , 4 × 1019 W/cm2) 
co-propagated pulse to beyond critical density

E23522

These experiments show for the first time the guiding 
of a high-intensity pulse to beyond critical density in 
a fast-ignition (FI)-relevant (>1-keV, Ls ~ 300-nm) plasma.
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Channeling through the corona of an imploded capsule 
offers an alternative to cone-in-shell targets
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The channeling beam evacuates the coronal plasma ahead of a 
second laser pulse used to heat the core of an imploded target.
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An experiment to measure channeling depth and residual 
density inside the channel was performed on OMEGA EP
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A single 10-ps, 1.2-kJ pulse channels up to ~0.6 nc 
through the underdense corona 
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A single 100-ps, 2-kJ pulse bores to overcritical 
densities in the corona
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Experiments with co-propagating 100-ps and 10-ps 
pulses were performed
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• A shock-driven channel can be used  to guide 
a second laser beam
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The residual density in the channel is found through 
an Abel inversion of the AFR image 
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The density in the channel is reduced to (1±0.75) × 1020 cm–3.
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The observed channel progression is consistent 
with particle-in-cell (PIC) simulations*

TC8059a

The 100-ps pulse has sufficient energy to reach the critical density, 
while the 10-ps pulse lacks energy to reach the critical density.

  *G. Li et al., Phys. Rev. Lett. 100, 125002 (2008).
**G. Li et al., Phys. Plasmas 18, 042703 (2011).

• Scaling laws for the required time and energy for channel to reach nc**
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Summary/Conclusions

OMEGA EP experiments demonstrate the creation 
of a channel to overcritical densities in a long-scale-
length plasma

• Angular filter refractometry (AFR) makes it possible to observe the density 
modification of a channel beyond critical density (1.4 × 1021 cm–3)

• A high-intensity (>1018 W/cm2) laser evacuates a conical-shaped cavity 
with ~65% lower density than the background density

• A 100-ps, 1-kJ laser pulse produced a channel beyond critical, allowing 
for the efficient transmission of a high-intensity (I , 4 × 1019 W/cm2) 
co-propagated pulse to beyond critical density

These experiments show for the first time the guiding 
of a high-intensity pulse to beyond critical density in 
a fast-ignition (FI)-relevant (>1-keV, Ls ~ 300-nm) plasma.



Using the intense light pressure of a second laser pulse, 
channeling may hold promise as an additional method 
of laser pulse delivery

E23524

    *C. G. Durfee and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993).
  **J. Fuchs et al., Phys. Rev. Lett. 105, 225001 (2010).
***W. Theobald et al., Phys. Plasmas 18, 056305 (2011).

• PL ~ 100’s of Mbar

• A shock-prepared channel can act 
as an embedded fiber-optic cable 
to guide a second pulse*

• Preformed channels have been 
demonstrated to enhance the 
propagation of a trailing pulse**

• Laser-compressed matter has a halo 
of underdense low-density plasma 
“corona” that must be dealt with;  
the corona plasma has a density 
stratification length of 100’s of microns 

The channel must reach a comparable depth 
as the cone tip in cone-in-shell implosions.***

• Forward-going velocity of the 
channel in an FI-relevant plasma 
(Te > 1 keV, Ls ~ 300 nm)

• Density depletion inside the channel

• Duration of channel existence
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The channel front advances at a supersonic velocity 
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• All shots are scaled by average 
intensity 

• Error bars in timing (±20 ps) 
dominate the uncertainty in Vc

• Compares 1.25-kJ, 10-ps pulses 
with 0.75- to 2.6-kJ, 100-ps pulses

• This scaling shows the 
channeling beam is pushing 
against a reflective front in the 
entire underdense region

S. Ivancic in preparation.
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A ponderomotive hole-boring model accurately 
describes the ultimate depth the channel reaches
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• The model is based on a 
balance of velocities acting 
on the channel

• Vc – channel-head velocity 
        (measured)

• Vb – blowoff velocity 
     of corona (measured)

• The peak depth is a function of the channeling- 
beam duration and blowoff velocity
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This model suggests that a full-energy (2.6-kJ, 100-ps, 3 × 1018 W/cm2) 
OMEGA EP beam may reach up to 25 nc in a shorter-scale-length 
OMEGA implosion (Ls ~ 100 nm).
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Laboratory Basic Science (LBS) shot time was allocated 
to study integrated channeling experiments on OMEGA 

Integrated Experiment Proposal
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• The neutron yield from D2 reactions gives a measure of the increase 
in temperature caused by the electron heating

• A spherical crystal imager* (SCI) is used to obtain a spatial distribution 
of Cu Ka x rays induced by fast electrons in the imploded core

*C. Stoeckl et al., Rev. Sci. Instrum. 83, 10E501 (2012).
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Isochoric-heated, laser-compressed targets have 
a practical application in fast ignition*
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• The ponderemotive potential of intense 
laser pulses (>1018 W/cm2) creates fast 
electrons in the MeV range** 

• Fast-electron heat-compressed 
material at a constant volume 
created dense and hot plasmas

A method is required to channel the intense laser through 
the large corona (~mm) of laser-compressed targets.
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  *M. Tabak et al., Phys. Plasmas 1, 1626 (1994).
**S. C. Wilks et al., Phys. Rev. Lett. 69, 1383 (1992).


