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Polar-direct-drive (PDD) ignition is the alternative path 
to ignition at the National Ignition Facility (NIF)

Summary

•	 First integrated PDD implosion experiments explore the coupling of 
laser energy to the imploding CH shell in low-convergence experiments

•	 Radiography data of the imploding shell are in reasonable agreement 
with the simulations

•	 Hot-electron generation by the two-plasmon–decay (TPD) instability
	 is reduced by using mid-Z ablators

•	 A Laser Path-Forward working group is actively engaged in adding 
beam-smoothing capabilities
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Future focused experiments will examine laser–plasma 
and hydrodynamic instabilities.



Collaborators

P. B. Radha, T. R. Boehly, M. J. Bonino, T. J. B. Collins, R. S. Craxton, J. A. Delettrez,
D. H. Edgell, R. Epstein, G. Fiksel, D. H. Froula, V. N. Goncharov, D. R. Harding,
T. J. Kessler, J. P. Knauer, M. Lafon, J. A. Marozas, F. J. Marshall, R. L. McCrory,

P. W. McKenty, D. D. Meyerhofer, D. T. Michel, J. F. Myatt, S. P. Regan, M. Rosenberg,
T. C. Sangster, W. Seka, A. Shvydky, S. Skupsky, A. A. Solodov, C. Stoeckl, and J. D. Zuegel

University of Rochester
Laboratory for Laser Energetics

D. T. Casey, K. N. LaFortune, D. H. Kalantar, S. LePape, B. J. MacGowan, A. J. Mackinnon,
A. G. MacPhee, J. Meeker, S. R. Nagel, R. J. Wallace, and C. Widmeyer

Lawrence Livermore National Laboratory

P. Fitzsimmons, J. D. Kilkenny, C. Kurz, and A. Nikroo

General Atomics

J. A. Frenje, R. D. Petrasso, and H. Rinderknecht

Massachusetts Institute of Technology

J. Bates, M. Karasik, S. Obenschain, A. Schmitt, and J. Weaver
Naval Research Laboratory



Outline
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•	 Polar-direct-drive ignition on the NIF

•	 Early NIF experiments (12 shots to date)

–	 trajectory

–	 symmetry

–	 laser–plasma interactions

•	 The path forward

•	 Conclusions
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LLE is developing PDD:* a platform for direct-drive 
inertial confinement fusion (ICF) on the NIF using 
the x-ray-drive beam geometry
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•	 Increasingly oblique irradiation near
	 the equator

–	 reduced absorption

–	 reduced hydro-efficiency

–	 lateral heat flow

–	 cross-beam energy transfer (CBET)

*S. Skupsky et al., Phys. Plasmas 11, 2763 (2004).



The key physics areas for PDD are energy 
coupling, implosion symmetry, imprinting, 
and laser–plasma interactions (LPI’s) 
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Early NIF implosions are using existing hardware 
to study implosion hydrodynamics and LPI
at ignition-relevant conditions
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Current NIF beam smoothing precludes high-convergence 
implosion experiments.

PDD Platform
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A suite of diagnostics is used to measure the shell 
trajectory, symmetry, and plasma parameters
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•	 Additional diagnostics include

–	 scattered light—FABS/NBI

–	 hard x-ray emission—FFLEX

–	 soft x-ray emission—Dante

–	 yield and n-bang time—nTOF’s, pTOF

–	 areal density—WRF

PDD Platform

FABS: full-aperture backscatter station
NBI: near backscatter imager
FFLEX: filter-fluorescer x-ray diagnostic
WRF: wedge range filter



Radiography data is used to extract the shell trajectory
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Trajectory

0
0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4

Time (ns)

R
ad

iu
s 
(m

m
)

5 6 7 8 9

N140612
t = 7.75 ns

1500 nm

Backlit data



Two-dimensional DRACO simulations without cross-beam 
energy transfer (CBET) do not match the shell trajectory
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Trajectory
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CBET redistributes energy between intercepting beams 
and reduces laser absorption near the equator

E23669
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Backlit data
DRACO without CBET
DRACO with CBET
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Including CBET in the DRACO simulations improves 
the agreement with the measured trajectory
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•	 Discrepancy between simulations and data may 
indicate Rayleigh–Taylor (RT) growth

Trajectory

P. B. Radha et al., JO4.00013, this conference.



Coronal self-emission imaging probes the region close 
to the ablation surface*
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Shape

Self-emission imaging makes it possible to measure low-mode 
asymmetries without backlighting.
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*D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).



The agreement in equatorial shape between simulation 
and experiment improves when including CBET
in the calculations
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Shape
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•	 The difference between experimental data and simulations are likely 
a result of 3-D effects not captured by 2-D calculations
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The self-emission inferred shape evolution matches 
the radiography data very well
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Shape



The self-emission trajectory is delayed compared 
to simulations
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•	 The discrepancy between backlit and self-emission trajectory 
is currently not fully understood

Trajectory
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TC10695h

Beam pointing, defocus, and energy balance  
have been used to control and improve symmetry

Framing-camera images
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Further improvements in symmetry will 
require dedicated PDD phase plates and 
well-characterized beam-spot profiles.

Shape



The TPD instability is the dominant source of hot electrons 
in direct-drive ICF experiments
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•	 Hot electrons can penetrate the ablator and preheat the fuel

•	 TPD gain scales as*

–	 GIH: overlapped beam intensity

–	 Ln: plasma scale length

–	 Te: electron temperature 

•	 TPD signatures

–	~L  2 and 3/2 ~L emission

–	 hard x-ray emission >20 keV

*D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).
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~/2 emission is indicative of TPD in PDD 
implosions on the NIF*
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LPI

*W. Seka et al., PO4.00011, this conference.
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Hot electrons are generated predominantly during 
the main capsule drive
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•	 Accumulated fraction of hot electrons versus deposited 
laser energy saturates at ~0.4% in CH ablators

•	 0.4% or less conversion efficiency is required
	 for ignition designs

LPI
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TPD can be reduced by using mid-Z ablators*
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*J. F. Myatt, Phys. Plasmas 20, 052705 (2013);
W. Seka et al., Phys. Plasmas 16, 052701 (2009).

The inferred preheat with the Si ablator is reduced by ~50%.
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Future experiments will examine laser–plasma 
and hydrodynamic instabilities
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•	 Cone-in-shell experiments will investigate laser imprint and Rayleigh-
Taylor growth at NIF conditions

–	A. Shvydky et al., UO4.00008, this conference

•	 Planar experiments will approximate the interaction conditions
	 at pole and equator of a PDD target 

–	 investigate beam angle of incidence on TPD hot-electron 
production in the absence of CBET

•	 CBET mitigation via hemispheric Dm detuning will be investigated
	 by repointing the outer cones in one hemisphere to the equator

–	 J. A. Marozas et al., NO4.00014, this conference



Polar-direct-drive ignition requires additional 
capabilities on the NIF
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Future NIF Experiments

The NIF PDD Laser Path-Forward working group is actively engaged 
in adding beam smoothing, phase plates, polarization smoothing, 
and hemispheric Δm.
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Summary/Conclusions
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Polar-direct-drive (PDD) ignition is the alternative path 
to ignition at the National Ignition Facility (NIF)

Future focused experiments will examine laser–plasma 
and hydrodynamic instabilities.

•	 First integrated PDD implosion experiments explore the coupling of 
laser energy to the imploding CH shell in low-convergence experiments

•	 Radiography data of the imploding shell are in reasonable agreement 
with the simulations

•	 Hot-electron generation by the two-plasmon–decay (TPD) instability
	 is reduced by using mid-Z ablators

•	 A Laser Path-Forward working group is actively engaged in adding 
beam-smoothing capabilities


