The Release Behavior of Diamond Shocked to 15 Mbar

Particle velocity u_p (km/s)

56th Annual Meeting of the American Physical Society Division of Plasma Physics New Orleans, LA 27–31 October 2014

M. C. Gregor University of Rochester Laboratory for Laser Energetics

The release of shocked diamond is studied by impedance matching with known standards

- The National Ignition Facility (NIF) uses ultra-nanocrystalline high-density carbon (HDC) ablators
- Knowledge of the diamond release behavior is critical for inertial confinement fusion (ICF) target designs
- Release data are obtained by impedance matching with known standards
- Release models for both single-crystal (SC) diamond and HDC will be constrained by the experimental data

T. R. Boehly, C. A. McCoy, D. N. Polsin, and D. D. Meyerhofer

University of Rochester Laboratory for Laser Energetics

D. E. Fratanduono, P. M. Celliers, and G. W. Collins

Lawrence Livermore National Laboratory

Release data are obtained using the impedancematching technique between known standards

LL

Motivation

Initial NIF shock-timing experiments revealed inaccuracies in the ablator release model

The glow-discharge polymer (GDP) equation-of-state model was corrected using release data into liquid D₂.*

*S. Hamel et al., Phys. Rev. B <u>86</u>, 094113 (2012).

UR

E23264a

Experiments with HDC provide both Hugoniot and release measurements

- Instantaneous shock velocities in HDC are determined using an unsteady waves correction*
 - C. A. McCoy et al., CO3.00006, this conference;
 - D. E. Fratanduono et al., JO7.00008, this conference.
 - *D. E. Fratanduono et al., J. Appl. Phys. 116, 033517 (2014).

Hugoniot measurements were used to create a $U_{\rm s}$ - $u_{\rm p}$ relation for HDC

*D. G. Hicks et al., Phys. Rev. B 78, 174102 (2008).

^{*}M. D. Knudson and R. W. Lemke, J. Appl. Phys. <u>114</u>, 053510 (2013).

^{*}M. D. Knudson and R. W. Lemke, J. Appl. Phys. <u>114</u>, 053510 (2013).

*M. D. Knudson and R. W. Lemke, J. Appl. Phys. <u>114</u>, 053510 (2013). **M. D. Knudson and M. P. Desjarlais, Phys. Rev. B 88, 184107 (2013).

E23606c

The SC diamond release model is constrained using multiple standards

*M. D. Knudson and M. P. Desjarlais, Phys. Rev. B <u>88</u>, 184107 (2013).

LL

**M. A. Barrios et al., Phys. Plasmas <u>17</u>, 056307 (2010).

[†]D. G. Hicks *et al.*, Phys. Rev. B <u>79</u>, 014112 (2009).

The release of shocked diamond is studied by impedance matching with known standards

- The National Ignition Facility (NIF) uses ultra-nanocrystalline high-density carbon (HDC) ablators
- Knowledge of the diamond release behavior is critical for inertial confinement fusion (ICF) target designs
- Release data are obtained by impedance matching with known standards
- Release models for both single-crystal (SC) diamond and HDC will be constrained by the experimental data

