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A Pathway to Ignition-Hydrodynamic-Equivalent 
Implosions in OMEGA Direct Drive Through the 

Reduction of Cross-Beam Energy Transfer
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Reducing cross-beam energy transfer on OMEGA will 
allow for more-stable ignition-relevant implosions

Summary

•	 Cross-beam energy transfer (CBET) reduces the ablation pressure, 
requiring less-stable implosions to reach tR = 300 mg/cm2  
and 3.7 × 107 cm/s

•	 CBET can be mitigated by reducing the diameter of the laser beams 
during the main drive

•	 A zooming phase plate is proposed to produce large-diameter laser 
spots during the pickets and small-diameter laser spots during the drive
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Target

CBET is spatially 
limited near M ~ 1

Energy is transferred
between beams by 
ion-acoustic waves 

k1

ka
k2

CBET reduces the energy coupled to the  
fusion capsule by transferring energy from  
the incident light to the outgoing light

CBET reduces the most hydrodynamically 
efficient portion of the incident laser beams.
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CBET reduces the ablation pressure by 50%  
in hydro-equivalent OMEGA designs

E23469 *V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).

Experiments have demonstrated that CBET can be mitigated 
by reducing the energy that propagates past the target.
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To reduce the laser spot without introducing nonuniformities, 
the diameter of the laser beams must be reduced after  
a sufficient conduction zone has been developed

E23591

rms deviation from round (v)

S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996);  A. J. Schmitt et al., Phys. Plasmas 11, 2716 (2004); 
I. V. Igumenshchev et al. Phys. Rev. Lett. 110, 145001 (2013).
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To reduce the laser spot without introducing nonuniformities, 
the diameter of the laser beams must be reduced after  
a sufficient conduction zone has been developed
rms deviation from round (v)

S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996); A. J. Schmitt et al., Phys. Plasmas 11, 2716 (2004); 
I. V. Igumenshchev et al. Phys. Rev. Lett. 110, 145001 (2013).
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Zooming* after the third picket is predicted to maintain good low-mode uniformity.

To reduce the laser spot without introducing nonuniformities, 
the diameter of the laser beams must be reduced after  
a sufficient conduction zone has been developed

*S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996); A. J. Schmitt et al., Phys. Plasmas 11, 2716 (2004); 
 I. V. Igumenshchev et al. Phys. Rev. Lett. 110, 145001 (2013).



Zooming can be implemented on OMEGA using a radially 
varying phase plate and a dynamic near field

E22039b D. H. Froula et al., Phys. Plasmas 20, 082704 (2013).

Main pulse

Picket pulse
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The smaller-diameter laser beams used during the 
pickets increase the imprint power spectrum over the 
modes with the highest Rayleigh–Taylor growth rates
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The effect of an increased imprint power spectrum resulting from 
the reduced beam diameters was tested in planar experiments.
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The sub-aperture imprint power spectrum was measured 
to produce increased imprint levels over the 
mid-frequency modes
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Recent results suggest that thicker Pd or 400 Å of gold 
will supress the low-mode laser imprint.

*S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996);	
 M. Karasik et al., Bull. Am. Phys. Soc. 58, 370 (2013).

X rays from a thin, high-Z layer (600-Å Pd)  
were used to reduce the imprint*
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A multipulse driver line is currently being implemented 
on OMEGA to support CBET mitigation projects
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•	 Limited energy 
(21 kJ)

•	 Reduced 
smoothing

•	 Full energy  
(28 kJ)

•	 Enhanced 
smoothing



Full-aperture zooming provides a viable path  
to hydro-equivalence on OMEGA

E22929a

A full-aperture zooming scheme (that will maintain excellent smoothing) 
is being developed that uses bandwidth to control the focal-spot size.

Full-aperture zooming
(26 kJ, m = 65 ng, a = 3.2) 
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Summary/Conclusions

Reducing cross-beam energy transfer on OMEGA will 
allow for more-stable ignition-relevant implosions

•	 Cross-beam energy transfer (CBET) reduces the ablation pressure, 
requiring less-stable implosions to reach tR = 300 mg/cm2  
and 3.7 × 107 cm/s

•	 CBET can be mitigated by reducing the diameter of the laser beams 
during the main drive

•	 A zooming phase plate is proposed to produce large-diameter laser 
spots during the pickets and small-diameter laser spots during the drive


