Observation of Two-Plasmon–Decay Common Plasma Waves Using UV Thomson Scattering

R. K. Follett University of Rochester Laboratory for Laser Energetics

56th Annual Meeting of the American Physical Society Division of Plasma Physics New Orleans, LA 27–31 October 2014

LLE

Summary

Electron plasma waves (EPW's) driven by common-wave two-plasmon decay (TPD) were observed on OMEGA using UV Thomson scattering

- Two large-amplitude Thomson-scattering peaks are observed in the Thomson-scattering spectrum
- The highest-intensity peak corresponds to the common-wave EPW driven by five OMEGA beams
- The secondary peak corresponds to EPW's associated with the Langmuir decay instability (LDI) driven by TPD
- Three-dimensional laser–plasma simulation environment (LPSE)* simulations reproduce the observed spectra

D. H. Edgell, R. J. Henchen, S. X. Hu, J. Katz, D. T. Michel, J. F. Myatt, J. Shaw, and D. H. Froula

> University of Rochester Laboratory for Laser Energetics

Thomson scattering (TS) was used to observe the common EPW driven by five OMEGA beams

ROCHESTER

A large amplitude spectral peak was observed at a wavelength corresponding to scattering from the forward-scattered common EPW

The shorter-wavelength peak corresponds to Thomson scattering from TPD backscatter, but these EPW's are not directly observable in the Thomson-scattering geometry.

LPSE* was used to simulate the region probed by Thomson scattering

Zakharov equations

 $\boldsymbol{D}_{\text{EPW}} \boldsymbol{E}(\bar{\boldsymbol{x}}, \boldsymbol{t}) = \boldsymbol{\delta} \boldsymbol{n} \boldsymbol{E} + \boldsymbol{S}_{\text{TPD}}(\boldsymbol{E}^*, \boldsymbol{E}_0)$

 $\boldsymbol{D}_{\mathsf{IAW}}\,\boldsymbol{\delta n}\,(\bar{\mathbf{x}},t) = \nabla^2 \,\big|\,\boldsymbol{E}\,\big|^2 + \nabla^2 \,\big|\,\boldsymbol{E}_0\,\big|^2$

LPSE five-beam simulation geometry

J. F. Myatt, PO4.00001, this conference.

Simulated Thomson scattering from LPSE reproduces both experimentally observed spectral peaks

The longer-wavelength peak is a result of Thomson scattering from the forward-scattered common wave

The shorter-wavelength peak is Thomson scattering from secondary backscattered TPD EPW's generated by Langmuir decay

In LPSE simulations, the backscattered TPD peak appears in conjunction with the onset of large-amplitude ion-acoustic waves

Summary/Conclusions

Electron plasma waves (EPW's) driven by common-wave two-plasmon decay (TPD) were observed on OMEGA using UV Thomson scattering

- Two large-amplitude Thomson-scattering peaks are observed in the Thomson-scattering spectrum
- The highest-intensity peak corresponds to the common-wave EPW driven by five OMEGA beams
- The secondary peak corresponds to EPW's associated with the Langmuir decay instability (LDI) driven by TPD
- Three-dimensional laser–plasma simulation environment (LPSE)* simulations reproduce the observed spectra

