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SummarySummary

Two-plasmon–decay (TPD) common-wave scaling 
makes it possible to predict hot-electron production 
for experimental designs

•	 Hot-electron	production	from	TPD	in	OMEGA	and	OMEGA	EP	
experiments scales empirically with the TPD common-wave gain

•	 If	cross-beam	energy	transfer	(CBET) must be mitigated to achieve 
ignition hydrodynamic equivalence on OMEGA then TPD mitigation 
will likely be required

•	 The	scaling	predicts	that	TPD	mitigation	with	mid-Z layers will 
sufficiently reduce the hot-electron production
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The common-wave gain provides a useful empirical scaling 
that unifies the different experimental geometries
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The common-wave gain can be used as a scaling 
metric for target design.



A hydrocode postprocessor calculates maximum 
common-wave gain on the quarter-critical surface

E23225a *D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).
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•	 Linear	theory	shows	that	a	resonant	
electron plasma wave (EPW) is 
shared by multiple beams in the 
region bisecting the wave vectors 
of the beam*

•	 Three-dimensional	ray	tracing	
finds the common-wave gain from 
all groups of three or more beams 
group at each point on the surface 

	•	To	predict	hot-electron	yields,	
the maximum gain over the entire 
surface is assumed to dominate
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CBET mitigation strategies based on reduced beam size 
are being evaluated for implementation on OMEGA
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•	 Typically	in	CBET,	the	edge	seed	of	outgoing	beams	takes	energy	from 
the center of ingoing beams

•	 Reducing	the	beam	radius	increases	absorption	and	the	target	drive 
as well as the maximum common-wave gain caused by the higher intensities
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Reduced-beam-size CBET mitigation schemes 
on OMEGA will likely require TPD mitigation

E23423

Multilayer mid-Z targets have shown promise for TPD mitigation.
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Experimental tests of multilayer targets produced many 
fewer hot electrons than CH targets

TC11238a

•	 A	mid-Z layer (Si) embedded in the target shell is designed to increase the coronal 
temperature at quarter critical to reduce the two-plasmon–decay produced hot electrons
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Mid-Z multilayers are predicted to significantly 
reduce hot-electron production
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SummarySummary/Conclusions

Two-plasmon–decay (TPD) common-wave scaling 
makes it possible to predict hot-electron production 
for experimental designs

•	 Hot-electron	production	from	TPD	in	OMEGA	and	OMEGA	EP	
experiments scales empirically with the TPD common-wave gain

•	 If	cross-beam	energy	transfer	(CBET) must be mitigated to achieve 
ignition hydrodynamic equivalence on OMEGA then TPD mitigation 
will likely be required

•	 The	scaling	predicts	that	TPD	mitigation	with	mid-Z layers will 
sufficiently reduce the hot-electron production


