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Limits on the Level of Fast-Electron Preheat 
in Direct-Drive–Ignition Designs
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Fast-electron preheat in excess of 0.2% of the laser 
energy reduces the 1-D gain by 30%

Summary

• Optimized high-gain ignition targets are sensitive to preheat

• Fast electrons will increase preheat and reduce gain

• The gain reduction is dependent on the fast-electron-transport model

• Preheat effects from the fast electrons can be slightly reduced 
by reoptimizing the ignition targets
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Optimal target implosions* have low preheat, 
which leads to high energy gains on the National 
Ignition Facility (NIF) laser
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*T. J. B. Collins, J. A. Marozas, and P. W. McKenty,     
  Bull. Am. Phys. Soc. 57, 155 (2012).
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Picket power and timing, and the rise time of the drive 
portion of the pulse, control the preheat in the DT ice.



The fast electrons in LILAC are transported using either 
a straight-line method or a diffusion model
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• The energy distribution of 40- to 50-keV electrons spans the two transport 
regimes; the two models bracket the uncertainty in the transport model

• In the straight-line model, the electrons are created with a 90° half-angle 
divergence, directed into the target,* and lose energy according to the 
stopping power derived by C. K. Li and R. D. Petrasso** and A. A. Solodov†

• In the diffusion model, flux limiting is replaced by a streaming description 
of the long mean-free-path electrons‡

   *B. Yaakobi et al., Phys. Plasmas 20, 092706 (2013).
 **C. K. Li and R. D. Petrasso, Phys. Rev. E 70, 067401 (2004).
   †A. A. Solodov and R. Betti, Phys. Plasmas 15, 042707 (2008).
   ‡J. Delettrez and E. B. Goldman, Laboratory for Laser Energetics,           
     University of Rochester, Rochester, NY, LLE Report No. 36 (1976).



In both models, the fast-electron source tracks 
the conditions at the quarter-critical surface 
during the pulse
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• The energy source scales as Ffast 
S(h), where Ffast is a free parameter 
and h = I14 × L (mm)Y[233 × T(keV)]

 is the threshold parameter* 

• The electrons are created 
at the quarter-critical surface 
with the temperature 
Th = 8.0 × I14 – 22.0 (keV), 
a fit to OMEGA experiments

• Using this source function replicates 
well the measured temporal hard x-ray 
emission**

**A. Simon et al., Phys. Fluids 26, 3107 (1983).
**J. A. Delettrez et al., Bull. Am. Phys. Soc. 53, 248 (2008).
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Ice-layer preheat from fast electrons must be kept 
below 0.1% to 0.18% of the laser energy to maintain 
30% of the 1-D gain
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• The higher preheat limit in the diffusion model is caused by 
differences in the spatial energy deposition by the fast electrons
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The optimizing code TELIOS* was used to reduce 
the effects of fast-electron preheat
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• TELIOS uses the downhill simplex method (Nelder–Mead 
method) to optimize the gain from LILAC runs by varying 
target and pulse parameters

• Two adjustments were carried out to compensate the preheat 
from fast electrons by reducing the preheat from shocks

– picket timing and power

– rise time of the main pulse

• The drive portion of the pulse is kept constant

*T. J. B. Collins et al., Phys. Plasmas 19, 056308 (2012).



Gain improvements by optimizing the picket power 
and timing were about 30% for both models
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Both retuning methods yield comparable gain improvement, 
reducing the shock preheat by the same amount.
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Summary/Conclusions
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Fast-electron preheat in excess of 0.2% of the laser 
energy reduces the 1-D gain by 30%

• Optimized high-gain ignition targets are sensitive to preheat

• Fast electrons will increase preheat and reduce gain

• The gain reduction is dependent on the fast electron transport model

• Preheat effects from the fast electrons can be slightly reduced 
by reoptimizing the ignition targets

• Fast-electron preheat can also be reduced by using multilayer ablators*

*M. Lafon et al, JO4.00011, this conference;  
  D. H. Edgell et al, PO4.00002, this conference.


