A Polar-Drive Alpha-Heating Platform for the National Ignition Facility

Three-color detuning cross-beam energy transfer (CBET) mitigation achieves ignition-relevant implosion velocities

- Tricolor detuning restores over half the drive energy lost to CBET
- Nonlocal electron transport increases the hydrodynamic efficiency, offsetting the decrease in drive energy caused by CBET
- A polar-drive target design, with an implosion velocity of 370 $\mu m/ns,$ is predicted to demonstrate alpha heating with a neutron yield of 2 \times 10^{16}

J. A. Marozas, J. A. Delettrez, P. W. McKenty, and S. Skupsky

University of Rochester Laboratory for Laser Energetics

D. Cao, J. Chenhall, and G. Moses

University of Wisconsin

The majority of CBET* occurs over the equatorial region in polar drive

TC11765

OCHESTER

- CBET reduces the laser drive by as much as 30%, making CBET mitigation the mostimportant design issue
- Laser wavelength detuning is used for power balance in indirect-drive experiments; for direct drive it is used for CBET mitigation
- Detuning the laser wavelength in each hemisphere changes the location of the CBET resonance region; the interaction region vanishes only in the large detuning limit

*J. A. Marozas et al., NO4.00014, this conference; P. W. McKenty et al., NO4.00015, this conference.

CBET gain (PW/cm³)

Three wavelength detuning strategies were explored for CBET mitigation

- Banded and tricolor detuning have less scattered light at the equator because of reduced intrahemispherical CBET and less scattering of the polar beams
- Tricolor detuning has less scattered light at the poles because of reduced interhemispherical CBET and less scattering of the equatorial beams
- The sign $\Delta\lambda$ determines whether the interaction region moves radially in or out; this introduces a north–south asymmetry and a significant $\ell = 1$ perturbation

TC11528

Tricolor detuning restores over half of the absorbed energy lost to CBET

 Tricolor detuning not only reduces interhemispherical CBET but also reduces CBET within each hemisphere

The loss of absorbed energy is offset by the increase in hydrodynamic efficiency caused by nonlocal heat transport

- Nonlocal electron transport is modeled with the implicit Schurtz–Nicolaï–Busquet (iSNB) model*
- Tricolor detuning achieves an implosion velocity comparable to that of the original point design as simulated without CBET or nonlocal heat transport

*G. P. Shurtz, Ph. D. Nicolaï, and M. Busquet, Phys. Plasmas <u>7</u>, 4238 (2000); D. Cao et al., UP8.00084, this conference.

** T. J. B. Collins et al., Phys. Plasmas 19, 056308 (2012).

A robust target design has been developed that is predicted to demonstrate alpha heating

- The hot-spot temperature and uniformity are sufficient to generate significant alpha-deposition yield
- This design operates on an adiabat of ~3 to reduce hydrodynamic instability
- This lowers the growth factor for mode $\ell = 100$ by 82%

Design properties	Alpha-burning design
V _{imp} (µm/ns)	370
E _{laser} (MJ)	1.5
Peak power (TW)	433
In-flight aspect ratio (IFAR)	23
In-flight α	3
Peak $ ho R$ (g/cm ²)	1.6
Peak T _i (keV)	6.3
Neutron yield	2.4 × 10 ¹⁶

Simulated with CBET, nonlocal heat transport, and long-wavelength nonuniformities

CHESTER

The ion temperatures achieved are sufficient to demonstrate "bootstrap" heating

- The areal density and peak ion temperature, while insufficient to produce a sustained burn wave, do generate alpha-deposition neutron yield comparable to the neutron yield generated by compression alone
- $E_{\alpha}/E_{\text{tot}} \sim 0.5$, $Y_{\alpha}/Y_{\text{no}\,\alpha} \sim 1.7$
- The target implosion speed can be further increased by
 - increasing incident laser energy from 1.5 MJ to 1.8 MJ*
 - reducing the spot size to 85% of the target radius, increasing the absorbed laser energy by 6%
 - increasing the coronal electron temperature using moderate-Z ablators**

A high-gain, low-adiabat design is being developed based on the robust alpha-burning design.

UR

TC11570

^{*} J. A. Marozas *et al.*, 44th Anomalous Absorption Conference, Estes Park, CO (2014).

Three-color detuning cross-beam energy transfer (CBET) mitigation achieves ignition-relevant implosion velocities

- Tricolor detuning restores over half the drive energy lost to CBET
- Nonlocal electron transport increases the hydrodynamic efficiency, offsetting the decrease in drive energy caused by CBET
- A polar-drive target design, with an implosion velocity of 370 $\mu m/ns,$ is predicted to demonstrate alpha heating with a neutron yield of 2 \times 10^{16}
- A second design with a low adiabat is being toned for ignition

