Analysis of a High-Adiabat Cryogenic Implosion on OMEGA

A. Christopherson University of Rochester Laboratory for Laser Energetics 56th Annual Meeting of the American Physical Society Division of Plasma Physics New Orleans, LA 27–31 October 2014

Summary

We have approximately matched all experimental observables for a high-adiabat cryogenic implosion on OMEGA

- OMEGA shot 69515 was designed as a high-adiabat ($\alpha \sim$ 10) implosion and is expected to behave one dimensionally
- The purpose of this experiment was to test 1-D physics models
- By including shell preheat, 1-D simulations are able to approximately recover all experimental observables; however, physics other than preheat may be at play

UR 🔌

R. Epstein, F. J. Marshall, R. Nora,* C. Stoeckl, C. J. Forrest, J. A. Delettrez, P. B. Radha, J. Howard,* T. C. Sangster, K. S. Anderson, and R. Betti*

> University of Rochester Laboratory for Laser Energetics

*also Fusion Science Center

The objective of OMEGA shot 69515 was to analyze performance degradation in a regime where hydrodynamic instabilities can be neglected

The fast ramp pulse launches a strong shock, which sets the shell on a high adiabat ($\alpha > 10$).

High-adiabat implosions exhibit strong ablative stabilization of the Rayleigh–Taylor instability (RTI)

• The linear RTI growth rate is*

$$\gamma(t) = 0.94 \sqrt{\frac{\ell}{R(t)}g(t)} - 2.7\ell \frac{V_a(t)}{R(t)} \leftarrow V_a \sim \alpha^{3/5}$$

- ℓ is the mode number
- g(t) is the shell acceleration
- *R*(*t*) is the shell position
- $V_{a}(t)$ is the ablation velocity
- α is the shell adiabat

*H. Takabe et al., Phys. Fluids 28, 3676 (1985).

One-dimensional simulations overestimate the implosion performance

UR	
LLE	

	Experiment	LILAC (1-D)
Neutron yield	2.5 × 10 ¹³	3.5 × 10 ¹³
Burn width	127 (±59) ps	100 ps
Hot-spot radius	52(±7) μm	38 <i>µ</i> m
Areal density	50 (±10) mg/cm ² (nTOF) 73 (±10) mg/cm ² (MRS)	68 mg/cm ²
Bang time	1.75 (±0.06) ns	1.79 ns
Ion temperature	2.8 (±0.5) keV	3.0 keV

• An additional source of performance degradation is likely present

nTOF: neutron time of flight MRS: magnetic recoil spectrometer

Two-dimensional DRACO simulations (laser imprint + ice roughness) confirm that hydro-instabilities were negligible in this experiment

We conclude that any performance degradation with respect to 1-D simulations is not caused by instabilities for this experiment.

TC11718

A possible source of degradation is hot-electron preheat from the two-plasmon–decay (TPD) instability

- Hard x rays from hot electrons are temporally measured and the corresponding source is put into the simulation
- A hard x-ray detector (HXRD) signal is measured in this high-intensity shot ${>}10^{15}\,W/cm^2$

• The HXRD calibration (5.18-pC/mJ hard x rays) implies there are 174 J of hot electrons, of which 34 J deposit their energy into the unablated DT shell

TC11719

Hot electrons degrade the implosion by preheating the shell and raising the adiabat

Many of the observables are recovered when 37 J of hot electrons are deposited into the unablated shell

	Neutron temporal diagnostic (NTD)	LILAC without hot electrons	LILAC with hot electrons
Yield	$\textbf{2.5}\times\textbf{10^{13}}$	3.5 × 10 ¹³	2.7 × 10 ¹³
Burnwidth	127 ps	100 ps	125 ps
Bang time	1.75 ns	1.79 ns	1.77 ns
Areal density	50 mg/cm ² (NTOF) 73 mg/cm ² (MRS)	68 mg/cm ²	50 mg/cm ²
Ion temperature	2.8 keV	3.0 keV	2.9 keV

The hot-spot radius can be inferred from the gated monochromatic x-ray images (GMXI) detector that measures x rays emitted from the hot spot during burn

CHESTER

Spect3D simulations of the core self-emission show a large hot-spot radius in preheated implosions

	GMXI-c	LILAC without hot electrons	LILAC with hot electrons
R ₁₇	52±7 µm	38 <i>µ</i> m	45 <i>µ</i> m

*J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007).

Summary/Conclusions

We have approximately matched all experimental observables for a high-adiabat cryogenic implosion on OMEGA

- OMEGA shot 69515 was designed as a high-adiabat ($\alpha \sim$ 10) implosion and is expected to behave one dimensionally
- The purpose of this experiment was to test 1-D physics models
- By including shell preheat, 1-D simulations are able to approximately recover all experimental observables; however, physics other than preheat may be at play

