Analysis of a High-Adiabat Cryogenic
Implosion on OMEGA
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We have approximately matched all experimental
observables for a high-adiabat cryogenic implosion
on OMEGA
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e OMEGA shot 69515 was designed as a high-adiabat (o ~ 10)
implosion and is expected to behave one dimensionally

* The purpose of this experiment was to test 1-D physics models

* By including shell preheat, 1-D simulations are able to approximately
recover all experimental observables; however, physics other than
preheat may be at play
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The objective of OMEGA shot 69515 was to analyze
performance degradation in a regime where
hydrodynamic instabilities can be neglected
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The fast ramp pulse launches a strong shock, which sets
the shell on a high adiabat (o > 10).
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High-adiabat implosions exhibit strong ablative
stabilization of the Rayleigh—Taylor instability (RTI)
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The linear RTI growth rate is*

Va(t) <— Vu~oB5
0 a
’Y(t)=0.94\/mg(t)—2.70 R(t)

¢ is the mode number
e g(t) is the shell acceleration

e R(t) is the shell position

exp [/ y(t)dt]

V,(t) is the ablation velocity

o is the shell adiabat

*H. Takabe et al., Phys. Fluids 28, 3676 (1985).
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One-dimensional simulations overestimate
the implosion performance
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Neutron yield 2.5 x 1013 3.5 x 1013
Burn width 127 (£59) ps 100 ps
Hot-spot radius 52(+7) um 38 um
2
Areal density 90 (+10) mg/cm< (nTOF) 68 mg/cm?2

73 (+10) mg/cm2 (MRS)
Bang time 1.75 (+£0.06) ns 1.79 ns
lon temperature 2.8 (£0.5) keV 3.0 keV

e An additional source of performance degradation is likely present

nTOF: neutron time of flight
TC11563 MRS: magnetic recoil spectrometer




Two-dimensional DRACO simulations (laser imprint +
ice roughness) confirm that hydro-instabilities were

negligible in this experiment
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We conclude that any performance degradation with respect to
1-D simulations is not caused by instabilities for this experiment.
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A possible source of degradation is hot-electron preheat
from the two-plasmon-decay (TPD) instability
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e Hard x rays from hot electrons are temporally measured
and the corresponding source is put into the simulation
* A hard x-ray detector (HXRD) signal is measured in this high-intensity
shot >1015 W/cm?2 .
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e The HXRD calibration (5.18-pC/mdJ hard x rays) implies there
are 174 J of hot electrons, of which 34 J deposit their energy
into the unablated DT shell
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Hot electrons degrade the implosion by preheating

the shell and raising the adiabat
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Many of the observables are recovered when 37 J

of hot electrons are deposited into the unablated shell
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Time (ns)
diagnostic (NTD) hot electrons hot electrons
Yield 2.5 x 1013 3.5 x 1013 2.7 x 1013
Burnwidth 127 ps 100 ps 125 ps
Bang time 1.75 ns 1.79 ns 1.77 ns

50 mg/cm?2 (NTOF)
73 mg/cm?2 (MRS)

lon temperature 2.8 keV 3.0 keV 2.9 keV

Areal density 68 mg/cm?2 50 mg/cm?2
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The hot-spot radius can be inferred from the gated
monochromatic x-ray images (GMXI) detector that

measures X rays emitted from the hot spot during burn
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Spect3D simulations of the core self-emission show
a large hot-spot radius In preheated implosions
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TC11567 *J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007).




Summary/Conclusions

We have approximately matched all experimental
observables for a high-adiabat cryogenic implosion
on OMEGA
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e OMEGA shot 69515 was designed as a high-adiabat (o ~ 10)
implosion and is expected to behave one dimensionally

* The purpose of this experiment was to test 1-D physics models

* By including shell preheat, 1-D simulations are able to approximately
recover all experimental observables; however, physics other than
preheat may be at play
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