Measurements of Laser Imprinting Using 2-D Velocity Interferometry

T. R. Boehly University of Rochester Laboratory for Laser Energetics 56th Annual Meeting of the American Physical Society Division of Plasma Physics New Orleans, LA 27–31 October 2014

Velocity interferometry is used to study imprinting by observing modulations in the shock velocity

 Laser-beam nonuniformities produce modulations in shock pressure that create density modulations; these can seed Rayleigh–Taylor (RT) growth

- Two-dimensional velocity interferometry directly measures shock velocity and the perturbations caused by imprinting
- We observed shock-velocity perturbations in CH and CH/D₂ targets driven by multiple beams
- We obtained expected results for known increases in uniformity and results correlate well with x-ray radiographic data
- Experiments with cryogenic D₂ show the beneficial effects of beam smoothing and multiple beams

Collaborators

G. Fiksel, S. X. Hu, and V. N. Goncharov

University of Rochester Laboratory for Laser Energetics

P. M. Celliers

Lawrence Livermore National Laboratory

Velocity interferometry is used to directly measure shock perturbations caused by imprinting

UR

VISAR measures velocity by comparing the phases of a doppler-shifted probe beam at two different times

• $\delta v/v \sim 10^{-4}$ at 2- μ m resolution

Data comprise an *interferogram* of two images (at *t* and *t* + δt), providing a 2-D map of velocity

• The 2-D velocity map is Fourier analyzed

 δv 's reside in deviations from reference fringe

Fourier transform

Drive-beam nonuniformites are caused by high-frequency speckle from distributed phase plates (DPP's)

1-D smoothing by spectral dispersion (SSD)

Velocity interferometry shows distinct patterns that are correlated to laser nonuniformities (speckle)

UR

E23600

ROCHESTER

For 100-ps pulses, multiple beams with no SSD produce the expected decrease in imprint level

Drive uniformity increased by beam (speckle) overlap.

Sub-Aperature Beams

Imprint measurements using radiography and interferometry show qualitative agreement

Imprint measurements in cryogenic D_2 show the benefits of beam smoothing and multiple beams

LLE

E23603 ROCHESTER

Velocity interferometry is used to study imprinting by observing modulations in the shock velocity

 Laser-beam nonuniformities produce modulations in shock pressure that create density modulations; these can seed Rayleigh–Taylor (RT) growth

- Two-dimensional velocity interferometry directly measures shock velocity and the perturbations caused by imprinting
- We observed shock-velocity perturbations in CH and CH/D₂ targets driven by multiple beams
- We obtained expected results for known increases in uniformity and results correlate well with x-ray radiographic data
- Experiments with cryogenic D₂ show the beneficial effects of beam smoothing and multiple beams

