Measurements of Alpha Heating in Inertial Confinement Fusion

![Graph showing yield vs. alpha energy fraction]

- **Analytic model**
- **1-D LILAC (23 kJ to 2 MJ)**
- **2-D DRACO (1.8 MJ)**

\[f_\alpha = \frac{1/2 \text{ alpha energy in hot spot}}{\text{hot-spot internal energy}} \]

R. Betti
University of Rochester
Laboratory for Laser Energetics

56th Annual Meeting of the
American Physical Society
Division of Plasma Physics
New Orleans, LA
27–31 October 2014
Measurements of alpha heating are developed and used to determine the yield amplification caused by alphas and the requirements for ignition

- Alpha heating is estimated in two different ways using the Lawson parameter and the fractional alpha energy
- National Ignition Facility (NIF) shot N140120 exhibits an $\sim 2.5 \times$ amplification of the neutron yield caused by alpha heating and a no-burn Lawson parameter of ~ 0.65
- Options for ignition: higher in-flight aspect ratios (IFAR’s), improved yield-over-clean (YOC), and/or use of adiabat shaping
Collaborators

University of Rochester
Laboratory for Laser Energetics
*also Fusion Science Center

J. Sanz

Escuela Técnica Superior de Ingenieros Aeronáuticos
Universidad Politécnica de Madrid
Madrid, Spain
Hot-spot evolution (including alpha heating) depends almost exclusively on the Lawson ignition parameter

- The model solves the mass, momentum, and energy conservation equations for the hot-spot pressure P_t, temperature T_t, and radius R_t^*

 - Energy conservation: \[
 \frac{d}{d\tau}(\dot{P}R^5) = \gamma\dot{P}^2R^5\dot{T} - \beta\dot{P}^2R^5\dot{T}^{-5/2}
 \]

 - Alpha heating
 - Radiation losses

- The solution is singular when $\chi_{no} = \left[\frac{P\tau}{(P\tau)_{ign}} \right]_{no} \alpha \equiv \frac{\gamma}{1.11 + 0.7\beta}$

- Rewrite energy equation dependent approximately only on χ_{no}

 \[
 \frac{d}{d\tau}(\dot{P}R^5) = 1.1\chi_{no} \gamma\dot{P}^2R^5\dot{T} + \dot{P}^2R^5(0.7\chi_{no}\beta\dot{T} - \beta\dot{T}^{-5/2})
 \]

 Quasi cancellation (~20% error)

$\chi_{\text{no } \alpha}$ is the most useful ignition metric, but only χ_α can be measured

- The no-α ignition parameter is written in terms of the yield (Y) and ρR

$$\chi_{\text{no } \alpha} = (\rho R_{\text{no } \alpha})^{0.61} \left(0.24 \frac{Y_{\text{no } \alpha}}{M_{\text{DT}}}\right)^{0.34}$$

- The measureable parameter must use quantities with alpha heating

$$\chi_\alpha = (\rho R_\alpha)^{0.61} \left(0.24 \frac{Y_\alpha}{M_{\text{DT}}}\right)^{0.34} \approx \chi_{\text{no } \alpha} \left(\frac{Y_\alpha}{Y_{\text{no } \alpha}}\right)^{0.34}$$

- $\rho R =$ total areal density in g/cm2
- $Y =$ neutron yield in units of 10^{16} neutrons
- $M_{\text{DT}} =$ unablated DT mass in mg

The yield-enhancement curves are used to measure both the yield enhancement caused by alphas and the no-alpha Lawson parameter.

In general agreement with B. Spears’ (LLNL) simulation results for NIF-ID point design target:

Another way of inferring alpha heating is through the fractional alpha energy deposited in the hot spot

\[f_\alpha \equiv \frac{0.5 E^\text{abs}_\alpha}{\frac{3}{2} \langle P \rangle V_{\text{hs}}} \]

- \(E^\text{abs}_\alpha = \theta_\alpha \times \text{Yield} \times 3.5 \text{ MeV} \) = absorbed alpha energy in the hot spot

- \(\theta_\alpha \approx 0.9 \left(1 - \frac{1}{3.4 \tau} + \frac{1}{160 \tau^2} \right) \) = fraction of alphas absorbed in the hot spot

 where \(\tau = \frac{\text{hot-spot radius}}{\text{alpha-particle range}} = \left(\frac{P_{\text{Gbar}}}{100} \right) \left(\frac{R_{\mu\text{m}}}{50} \right) \left(\frac{5}{T_{\text{keV}}} \right)^{5/2} \)

- Pressure and volume are inferred from observables according to C. Cerjan et al.**

\[f_\alpha \text{ can be directly inferred from experimental observables.} \]

The yield enhancement is an almost unique function of the fractional alpha energy f_{α}.

$$f_{\alpha} = \frac{1/2 \text{ } \alpha\text{-energy deposited in hot spot}}{\text{hot-spot internal energy}}$$
Alpha-heating analysis of NIF high-foot (HF) shot N140120

- Yield = \(9.2 \times 10^{15}\), \(\rho R = 0.8\) g/cm\(^2\), \(M_{DT} = 0.18\) mg, burnwidth = 161 ps, \(T = 4.9\) keV, and \(R_{hs} = 35.2\) \(\mu\)m*

- The \(\chi_\alpha\) analysis gives \(\chi_\alpha \approx 1\), a yield amplification of 2.5, and \(\chi_{no\alpha} = 0.65\)

- The \(f_\alpha\) analysis gives \(f_\alpha \approx 0.38\), a yield amplification of 2.7, and \(\chi_{no\alpha} = 0.67\)

Both the \(\chi_\alpha\) and the \(f_\alpha\) analyses give similar results.

Options for ignition: higher IFAR, improved YOC, and/or use of adiabat shaping

\[\chi_{\text{no } \alpha} \sim \theta_\alpha E_{\text{kin}}^{0.37} \text{YOC}^{0.4} P_{\text{abl}}^{0.4} \text{to } 0.6 \text{ IFAR } S_{\text{adiabat}}^{0.6} \]

- \(\theta_\alpha \) fraction of absorbed alphas \(\approx 0.7 \)
- \(S_{\text{adiabat}} = \text{adiabat shaping factor} = \langle \alpha \rangle / \alpha_{\text{inner}} \)
- Best shot to date \(\rightarrow \chi_{\text{HF}} \approx 0.65 \) (\(\chi = 1 \) for ignition)
- Options for achieving ignition
 - improve YOC (shape, IFAR, \(S_{\text{adiabat}} \)) but YOC is already high
 - increase \(\theta_\alpha \) (compressed B field at 0.5 Gauss?)
 - increase IFAR (but YOC may go down)
 - use adiabat shaping \(\rightarrow \) increase \(S_{\text{adiabat}} \)

Direct-drive simulations of the high foot (HF) show a possible ignition path with adiabat shaping (AS) and modest IFAR, CR, and pulse-length increase.

- Ignition pulse with AS is 13% longer
- IFAR at 2/3 radius is 20% higher in ignition pulse with AS
- Expected similar ablation-front growth factors
- Convergence ratio (CR) is 15% higher in ignition pulse with AS
Measurements of alpha heating are developed and used to determine the yield amplification caused by alphas and the requirements for ignition

- Alpha heating is estimated in two different ways using the Lawson parameter and the fractional alpha energy
- National Ignition Facility (NIF) shot N140120 exhibits an $\sim 2.5 \times$ amplification of the neutron yield caused by alpha heating and a no-burn Lawson parameter of ~ 0.65
- Options for ignition: higher in-flight aspect ratios (IFAR’s), improved yield-over-clean (YOC), and/or use of adiabat shaping