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Simulations of shock ignition (SI) at the National Ignition 
Facility (NIF) indicate best performance and stability  
at velocities below 3 × 107 cm/s

Summary

• A parameter study varied the implosion velocity and quantified the target 
robustness in 1-D and 2-D for plastic-ablator cryogenic capsules

• This study used polar-drive beam geometry to evaluate long-wavelength 
perturbations and laser imprint to study short wavelengths

• The target margin in 2-D with polar drive increases with implosion velocity 

• Low-velocity capsules showed less sensitivity to laser imprint
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Shock ignition separates the fuel-assembly phase  
from the ignition phase using a single laser system

TC10153e R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).
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The optimal implosion velocity for shock ignition  
is constrained by both 1-D dynamics and 
multidimensional stability characteristics
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The ignition window for shock ignition is lower than for the hot spot.

The optimal Vimp 
depends on adiabat 
and ignitor shock 
strength.
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Robustness to long-wavelength modes was  
evaluated using polar-drive nonuniformities  
and to short-wavelength modes using laser imprint
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Laser imprint modeled 
using multi-FM SSD*

*Multi-frequency-modulation smoothing by spectral dispersion



The previous shock-ignition* design for the NIF  
showed the highest sensitivity to polar-drive (PD) 
beam geometry and laser imprint

TC10738b
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*K. S. Anderson et al., Phys. Plasmas 20, 056312 (2013).
†Used a five-ring PD scheme
‡Ignition threshold factor

Vimp = 3.1 × 107 cm/s
ITF (1-D) = 4.1   IFAR = 22



Three new designs were analyzed; the velocities were 
varied by changing the target thickness
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Velocity (cm/s) 2.6 × 107 2.8 × 107 3.0 × 107

Gain (1-D) 69 62 58

ITF (1-D) 2.5 3.5 4.2

IFAR2/3 14 17 20

834 to 889 nm
1080 nm

160 to 215 nm

31 nm

DT gas

DT ice

CH
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The margin in 2-D polar-drive simulations increases  
at higher implosion velocities

TC11532
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*T. J. B. Collins, et al. Phys. Plasmas 19, 056308 (2012).
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Low-velocity, low-IFAR targets show  
less susceptibility to imprint
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ITF analysis with laser imprint is in progress.



Summary/Conclusions
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A survey of implosion velocity for shock ignition at the 
National Ignition Facility (NIF) indicates best performance 
and stability at velocities below 3 × 107 cm/s

• A parameter study varied the implosion velocity and quantified the target 
robustness in 1-D and 2-D for plastic-ablator cryogenic capsules

• This study used polar-drive beam geometry to evaluate long-wavelength 
perturbations and laser imprint to study short wavelengths

• The target margin in 2-D with polar drive increases with implosion velocity 

• Low-velocity capsules showed less sensitivity to laser imprint


