Two-Plasmon Decay Driven by Multiple Incoherent Laser Beams

\[\int |E(x, y, t)|^2 \, dy \biggm/ \int dy \text{ (arbitrary units)} \]

J. Zhang
University of Rochester
Laboratory for Laser Energetics

55th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
11–15 November 2013
Summary

Two-plasmon decay (TPD) driven by multiple incoherent beams in inhomogeneous plasma is investigated.

- Multiple coherent laser beams can share plasma waves in both large†-and small*-k regions.
- TPD driven by laser beams with finite temporal bandwidth and spatial incoherence give a higher absolute threshold.
- A more-realistic model including both distributed phase plates (DPP’s) and smoothing by spectral dispersion (SSD) is in development.

†C. Stoeckl et al., Phys. Rev. Lett. 90, 235002 (2003);
Collaborators

J. F. Myatt, R. W. Short, and A. V. Maximov
University of Rochester
Laboratory for Laser Energetics

H. X. Vu
University of California, San Diego, CA

D. A. Russell
Lodestar Research Corporation, Boulder, CO

D. F. DuBois
Los Alamos National Laboratory
and Lodestar Research Corporation, Boulder, CO
The Zakharov model is a time-enveloped fluid moment model that describes the coupling between Langmuir and ion-acoustic fluctuations.

Extended Zakharov model equations†

\[
\nabla \cdot \left[2i\omega_0 \left(\partial_t + \mathbf{v}_e \cdot \right) + 3\nu_e^2 \nabla^2 - \omega_p^2 \left(\delta n + \delta N \right)/n_0 \right] E
\]

\[
= \left(e/4m_e \right) \nabla \cdot \left[\nabla \sum_{m=1}^{N} (E_{0,m} \cdot E^*) - \sum_{m=1}^{N} E_{0,m} \nabla \cdot E^* \right] e^{-i(\omega_0 - 2\omega_p)e^t} + S_E
\]

Collisional plus Landau damping

Density gradient

Laser source

Noise source

Landau damping for ion-acoustic waves

Ponderomotive force

where the laser field \(E_L = \sum_{m}^{N} E_{0,m} (\mathbf{\hat{x}}, t) \exp(-i\omega_0 t) + c.c. \)

Multiple laser beams can share plasma waves in both large- and small-k regions

Energy spectrum of a Langmuir wave (LW) during the linear growth phase (early time, arbitrary units)

- Common wave at large k (convectively saturated)*
- Common wave at small k (corresponding to Simon’s absolutely unstable modes)†

$\mathbf{k}_{0,1}$ and $\mathbf{k}_{0,2}$

Landau cutoff (LC)

$\langle E^2 \rangle$

k_x/k_0

k_y/k_0

$10^{-4.7}$

$10^{-6.0}$

$10^{-7.4}$

$10^{-8.7}$

*R. W. Short et al., Bull. Am. Phys. Soc. 57, 300 (2012);
The investigation of TPD in incoherent laser beams is broken into three parts

• Temporal bandwidth is introduced in a way that is similar to SSD*
 – a large bandwidth ($\Delta \lambda \approx 10$ Å) is required to modify absolute growth

• Spatial incoherence is introduced using a DPP model**
 – the first investigations have looked at a single DPP speckle

• A model that includes both temporal and spatial bandwidth is under development

The effect of temporal bandwidth on the absolute threshold for a single beam is investigated

- \(E(t) = E_0 \exp(i\delta \sin \omega_m t) \); similar to SSD*
 - here \(\delta \) and \(\omega_m \) are the modulation amplitude and frequency
 \[\Delta \omega = 2\delta \omega_m; \quad \Delta \lambda / \lambda_0 = \Delta \omega / \omega_0 \]

Absolute growth rate for different temporal bandwidth

- \(T_{keV} = 2; \quad L_{\mu m} = 150; \) normal incidence
- Temporal bandwidth used here is one order larger than the growth rate

\(\Delta \lambda = 33.6 \text{ Å} \) increases the threshold intensity by \(\sim 30 \% \).

\[* \text{S. Skupsky et al., J. Appl. Phys. 66, 3456 (1989).} \]
\[** \text{Simon et al., Phys. Fluids 26, 3107 (1983).} \]
Temporal bandwidth must be large to have an effect on the TPD saturation level

- Nonlinear calculations
 - Two laser beams polarized in the same plane (p-polarized) $I_{14} = 4$, $L_n = 150$ μm, $T_e = 2$ keV, $\theta = 27^\circ$ (Laser intensity is $1.2 \times$ above absolute threshold)

$$\int |E(x,y,t)|^2 \, dy / \int dy \text{ (arbitrary units)}$$

If the temporal bandwidth is large enough to suppress absolute modes, the saturation level is greatly reduced.
A DPP model* is in development to include spatial incoherence

- Comparisons are underway between DPP and single speckle

An example of 2-D DPP laser beam with f/4

Single speckle with f/4

Single Gaussian laser beam with different f number:

\[f = \frac{\omega_a}{\lambda_0}; \quad T_{\text{keV}} = 2; \quad L_{\mu m} = 150 \]

So far it appears that the threshold is increased as the speckle f number (width) decreases.

Summary/Conclusions

Two-plasmon decay (TPD) driven by multiple incoherent beams in inhomogeneous plasma is investigated

- Multiple coherent laser beams can share plasma waves in both large†- and small*-k regions
- TPD driven by laser beams with finite temporal bandwidth and spatial incoherence give a higher absolute threshold
- A more-realistic model including both distributed phase plates (DPP’s) and smoothing by spectral dispersion (SSD) is in development

†C. Stoeckl et al., Phys. Rev. Lett. 90, 235002 (2003);