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Summary

DRACO*/LSP** integrated simulations are used to study 
the performance of cone-in-shell fast-ignition targets

•	 DRACO simulations have been confirmed by 8.05-keV flash radiography 
of cone-in-shell implosions and shock breakout measurements

•	 LSP simulations explain the fast-electron transport in integrated 
OMEGA experiments using Cu-doped plastic shells

– fast-electron–induced Cu Ka x-ray yield and spatial distribution 
are confirmed 

– ~2.5% of the total fast-electron energy is coupled to the core

- hard fast-electron spectrum

- large distance from the source to the core

- large divergence

FSC

*P. B. Radha et al., Phys. Plasmas 12, 056307 (2005).
**D. R. Welch et al., Phys. Plasmas 13, 063105 (2006).
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Integrated fast-ignition experiments with re-entrant cone- 
in-shell targets are performed at the Omega Laser Facility

•	 A	spherical	crystal	imager*	(SCI) is used to obtain a spatial distribution 
of Cu Ka x rays induced by fast electrons in the imploded core

FSC

*C. Stoeckl et al., Rev. Sci. Instrum. 83, 10E501 (2012).
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DRACO simulations of the compressed core areal density 
agree with the experiments 

•	 Cone-tip	breakout	time	agrees	in	the	experiments	and	simulations*

FSC

*W. Theobald et al., Bull. Am. Phys. Soc. 57, 115 (2012); 
A. A. Solodov et al., Bull. Am. Phys. Soc. 57, 29 (2012).
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•	 8.05-keV	Cu-Ka flash radiography of cone-in-shell implosions*
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CD shells with Cu dopant have been used to characterize 
the transport of fast electrons in the integrated experiments*
FSC

•	 EEP = 500 J, x = 10 ps, Epre = 20 mJ (low contrast)

*L. C. Jarrott et al., YO5.00004, this conference
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LSP simulations of fast-electron transport 
in the implosion plasma have been performed

•	 The	energy	spectrum	of	fast	electrons	is	predicted	by	particle-in-cell	(PIC) 
simulations* of OMEGA EP pulse propagation in the laser pre-plasma

FSC

* J. Li et al., Phys. Plasmas 20, 052706 (2013); B. Qiao et al., YO5.00005, this conference.
**Plasma temperature-dependent collection efficiency of the SCI is from H. Sawada et al., 

Phys. Plasmas 19, 103108 (2012).

•	 Isotropic	angular	distribution	of	fast	electrons	is	assumed	

•	 Fast-electron–induced	Cu	Ka emission and propagation through the imploded 
core is modeled**

•	 The	total	energy	of	fast	electrons	is	~30% of EEP = 500 J, inferred from 
comparing the Ka yield in the experiments to the simulations 
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LSP simulates the fast-electron transport 
and Cu Ka emission
FSC

•	 Hard	fast-electron	spectrum,	large	distance	from	the	source	to	the	core, 
and large divergence explain a weak coupling of fast electrons to the 
core (tcd > 1 g/cm3): 2.5% of the total fast-electron energy
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Ka-emission images agree in the experiments 
and simulations
FSC
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Summary/Conclusions

FSC

DRACO*/LSP** integrated simulations are used to study 
the performance of cone-in-shell fast-ignition targets

*P. B. Radha et al., Phys. Plasmas 12, 056307 (2005).
**D. R. Welch et al., Phys. Plasmas 13, 063105 (2006).

•	 DRACO simulations have been confirmed by 8.05-keV flash radiography 
of cone-in-shell implosions and shock breakout measurements

•	 LSP simulations explain the fast-electron transport in integrated 
OMEGA experiments using Cu-doped plastic shells

– fast-electron–induced Cu Ka x-ray yield and spatial distribution 
are confirmed 

– ~2.5% of the total fast-electron energy is coupled to the core

- hard fast-electron spectrum

- large distance from the source to the core

- large divergence
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The fuel assembly can be improved by optimizing the 
compression pulse and evacuating air from the shell

•	 Air	removal	reduces	the	mass	of	the	hot	spot	and	the	pressure 
on the cone tip; the fuel stagnates closer to the target center

•	 Compression	pulse	picket	is	optimized:

– picket power is reduced to account for an increased absorption 
(~50%) predicted by the nonlocal thermal transport model*

– with an optimized picket, the shell implodes on a lower adiabat 
and less fuel is injected by the shocks into the hot spot

FSC

*V. N. Goncharov et al., Phys. Plasmas 15, 056310 (2008).

Gas pressure Picket Cone tip Dt (ps) tRbreak (mg/cm2) tRmax (mg/cm2)

0.8-atm air Current 15-nm Au 300 80 300

Vacuum Optimized 15-nm Au 140 360 600

Vacuum Optimized 60-nm Al 80 500 600


