Polar-Drive Implosions on the NIF

NIF polar-drive implosion
Convergence ratio (CR) \(\sim 2\)

Data (framing-camera image)

\[\theta\]

Fractional radial deviation

\(1200-\mu m \times 1200-\mu m\) region

\[\text{Data} \quad - \quad \text{CBET model}\]

Angle \(\theta\) (°)

55th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
11–15 November 2013
Summary

Polar-drive (PD) implosions provide valuable information about laser coupling at National Ignition Facility (NIF) scales

- Room-temperature plastic shells are imploded with an adiabat $= 3$ laser pulse shape on the NIF
- Velocities are reduced relative to collisional absorption models and in better agreement with a cross-beam-energy-transfer (CBET) model.
- The CBET model also provides better agreement on the overall symmetry of the implosions

The goal of experiments in FY14 is to demonstrate CBET mitigation through the use of mid-Z ablators and/or wavelength difference between the NIF cones.
Collaborators

University of Rochester
Laboratory for Laser Energetics

T. Ma, A. J. Mackinnon, and S. LePape

Lawrence Livermore National Laboratory
Velocity and symmetry are being measured in PD implosions on the NIF to validate laser-coupling models.

- Velocity and symmetry are diagnosed from x-ray framing-camera images.
- Current beam nonuniformity precludes high-performance compression experiments.
- Low-intensity implosions are relatively insensitive to thermal-transport models—an excellent test for laser-deposition models.

CBET* reduces absorption near the equator relative to the pole

Instantaneous laser energy deposited versus polar angle (CR ~ 2)

Laser deposit (W/cm³)
- 1.7 x 10^16
- 1.0 x 10^16

Collisional absorption only
\(f_{\text{abs}} = 89\% \)

CBET
\(f_{\text{abs}} = 67\% \)

*J. A. Marozas et al., CO7.00004, this conference.
Inclusion of CBET in the *DRACO* simulation improves agreement with inferred trajectory.
Inclusion of CBET in the DRACO simulation improves agreement with inferred trajectory.
Inclusion of CBET in the *DRACO* simulation improves agreement with inferred trajectory

- Several reasons may contribute to residual difference between simulation and experiment
 - uncertainty in beam profiles
 - resolution at quarter-critical surface in simulation
 - nonuniformity growth at ablation surface
 - limitation of CBET modeling
The observed shell shape is reproduced well in simulations when CBET is included in the modeling.

Images at $R \sim 500 \mu m$
N130128 CR ~ 2

TC11025
The observed shell shape is reproduced well in simulations when CBET is included in the modeling.

Images at $R \sim 500 \, \mu m$
N130128 CR ~ 2

Collisional absorption only

Collisional absorption

Data

Fractional radial deviation

Angle θ (°)
The observed shell shape is reproduced well in simulations when CBET is included in the modeling.
Symmetry is well modeled when CBET is included in the simulation.

Legendre-mode amplitudes N130128

- P_2 (%)
- P_4 (%)
- P_6 (%)

- Collisional absorption only
- CBET
- Data
Polar-drive (PD) implosions provide valuable information about laser coupling at National Ignition Facility (NIF) scales

- Room-temperature plastic shells are imploded with an adiabat = 3 laser pulse shape on the NIF.
- Velocities are reduced relative to collisional absorption models and in better agreement with a cross-beam-energy-transfer (CBET) model.
- The CBET model also provides better agreement on the overall symmetry of the implosions.

The goal of experiments in FY14 is to demonstrate CBET mitigation through the use of mid-Z ablators and/or wavelength difference between the NIF cones.