Material Release at High-Energy Densities

Aluminum release isentrope

P. M. Nilson
University of Rochester
Laboratory for Laser Energetics

55th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
11–15 November 2013
The equation-of-state (EOS) isentrope has been determined in an isochorically heated Al plasma.

• Material release was investigated using planar aluminum targets heated with a 10-ps burst of energetic electrons.

• X-ray penumbral imaging shows target decompression over a nanosecond period after the initial target-heating phase.

• The measured density profiles were used to infer the $P(\rho)$ release isentrope for the initial target conditions (few eV) and compared to SESAME predictions.

The peak densities $(1.7 \pm 0.1 \text{ g/cm}^3)$ are 3× higher than previous release-isentrope measurements.*

*D. J. Hoarty et al., High Energy Density Phys. 8, 50 (2012).
Collaborators

C. Stillman, A. Shvydky, A. A. Solodov, R. Betti, D. H. Froula, and D. D. Meyerhofer

University of Rochester
Laboratory for Laser Energetics
Motivation

Isochoric heating provides a unique route to warm dense matter (WDM) and high-energy-density-plasma conditions.

• WDM systems start as a solid and end as a plasma
• Found in stellar interiors, cores of large planets, and inertial confinement fusion (ICF) implosions
• Significant uncertainties exist in WDM equation of state

Measurements are required for model development.

The $P(\rho)$ release isentrope is obtained from a single density profile measurement*

- Planar solid target
- Sound speed $c_s = \frac{1}{\rho t} \int_x^{x_{\text{max}}} \rho dx$
- Pressure $P = \int_x^{x_{\text{max}}} c_s^2 \frac{\partial \rho}{\partial x} dx$
- Assumes isochoric heating and conversion of thermal energy into PdV work alone

An independent measure of c_s is not required.

X-ray penumbral imaging provides 1-D absorption profiles with few-micron resolution*

Aluminum foils were heated with a 10-ps burst of energetic electrons.

Experiment

The reconstruction algorithm was tested by radiographing a static aluminum target

- The penumbral image was iteratively reconstructed based on a heuristic technique
- A pyramid-style architecture was used to obtain optimal reconstruction
- The reconstructed density profile is insensitive to the initial test profile

No prior knowledge of the plasma-density profile is required.

The measured density profile shows broad agreement with 1-D LILAC predictions at a few eV.
Results

The measured density profile shows broad agreement with 1-D LILAC predictions at a few eV.

Target: 800 × 100 × 20-μm Al
Laser: 1000 J, 10 ps
Probe time: $t_0 + 1$ ns
The inferred release isentrope shows deviations from single-temperature SESAME predictions.
The equation-of-state (EOS) isentrope has been determined in an isochorically heated Al plasma

- Material release was investigated using planar aluminum targets heated with a 10-ps burst of energetic electrons
- X-ray penumbral imaging shows target decompression over a nanosecond period after the initial target-heating phase
- The measured density profiles were used to infer the $P(\rho)$ release isentrope for the initial target conditions (few eV) and compared to SESAME predictions

The peak densities ($1.7 \pm 0.1 \text{ g/cm}^3$) are 3× higher than previous release-isentrope measurements.

D. J. Hoarty et al., High Energy Density Phys. 8, 50 (2012).