Material Release at High-Energy Densities

P. M. Nilson University of Rochester Laboratory for Laser Energetics 55th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 11–15 November 2013

The equation-of-state (EOS) isentrope has been determined in an isochorically heated AI plasma

- Material release was investigated using planar aluminum targets
 heated with a 10-ps burst of energetic electrons
- X-ray penumbral imaging shows target decompression over a nanosecond period after the initial target-heating phase
- The measured density profiles were used to infer the $P(\rho)$ release isentrope for the initial target conditions (few eV) and compared to SESAME predictions

The peak densities $(1.7\pm0.1 \text{ g/cm}^3)$ are $3\times$ higher than previous release-isentrope measurements.*

UR 火

Collaborators

C. Stillman, A. Shvydky, A. A. Solodov, R. Betti, D. H. Froula, and D. D. Meyerhofer

> University of Rochester Laboratory for Laser Energetics

Motivation

OCHESTER

Isochoric heating provides a unique route to warm dense matter (WDM) and high-energy-density-plasma conditions

 WDM systems start as a solid and end as a plasma

LLE

- Found in stellar interiors, cores of large planets, and inertial confinement fusion (ICF) implosions
- Significant uncertainties exist in WDM equation of state

Measurements are required for model development.

A Report on the SAUUL Workshop, Washington, DC (17–19 June 2002).

E21173b R. W. Lee et al., Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-TR-203844 (2004).

Technique

The $P(\rho)$ release isentrope is obtained from a single density profile measurement*

- Planar solid target
- Sound speed $c_s = \frac{1}{\rho t} \int_x^{x_{max}} \rho dx$

• Pressure
$$P = \int_{x}^{x_{max}} c_{s}^{2} \frac{\partial \rho}{\partial x} dx$$

 Assumes isochoric heating and conversion of thermal energy into *PdV* work alone

An independent measure of c_s is not required.

X-ray penumbral imaging provides 1-D absorption profiles with few-micron resolution*

Aluminum foils were heated with a 10-ps burst of energetic electrons.

UR

Experiment

Results

E22527

The reconstruction algorithm was tested by radiographing a static aluminum target

- The penumbral image was iteratively reconstructed based on a heuristic technique*
- A pyramid-style architecture was used to obtain optimal reconstruction
- The reconstructed density profile is insensitive to the initial test profile

No prior knowledge of the plasma-density profile is required.

Results

The measured density profile shows broad agreement with 1-D *LILAC* predictions at a few eV

Results

The measured density profile shows broad agreement with 1-D *LILAC* predictions at a few eV

The inferred release isentrope shows deviations from single-temperature SESAME predictions

Aluminum release isentrope. OMEGA EP: 20- μ m Al -- SESAME 3720 0.25 Pressure (Mbar) 0.20 0.15 0.10 0.05 0.00 1.5 0.5 0.0 1.0 Density (g/cm³)

Summary/Conclusions

The equation-of-state (EOS) isentrope has been determined in an isochorically heated AI plasma

- Material release was investigated using planar aluminum targets
 heated with a 10-ps burst of energetic electrons
- X-ray penumbral imaging shows target decompression over a nanosecond period after the initial target-heating phase
- The measured density profiles were used to infer the $P(\rho)$ release isentrope for the initial target conditions (few eV) and compared to SESAME predictions

The peak densities $(1.7\pm0.1 \text{ g/cm}^3)$ are $3\times$ higher than previous release-isentrope measurements.*

UR 火

