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The overlapping of many laser beams in a plasma leads  
to cooperative laser–plasma instabilities (LPI’s)

Summary

TC10364b

• Significant advances have been made toward understanding 
nonlinear propagation and absorption of laser light in the face of 
multibeam parametric instabilities

• Cross-beam energy transfer (CBET) has been identified in both 
direct- and x-ray-drive inertial confinement fusion (ICF)

• Multibeam two-plasmon decay is seen to be important in direct 
drive, while multibeam stimulated Raman scattering is implicated 
in x-ray drive
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• Cross-beam energy transfer (CBET)

• Stimulated Raman scattering (SRS)

• Two-plasmon decay (TPD)



Laser–plasma interaction in ignition-scale plasmas  
is complicated by several factors
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• Laser–plasma interactions involve a severe coupling of length  
and time scales

• Hydrodynamics * LPI

– development of in-line models (e.g., cross-beam energy transfer)

• Kinetic codes (e.g., particle-in-cell) are still too expensive to run for 
realistic conditions

– reduced models exploiting multiple time scales, e.g., harmonic 
decomposition,* are necessary (pF3D,** Harmonhy,† ZAK3D‡)

• Different codes for different scales can be patched together

• Multibeam interactions involve another level of complexity  
(that has usually been ignored in detailed modeling)

– era of multibeam LPI, where 3-D geometry is important/essential

 * D. Pesme et al., Plasma Phys. Control. Fusion 44, B53 (2002).
 ** R. L. Berger et al., Phys. Plasmas 5, 4337 (1998).
 † S. Hüller et al., Phys. Plasmas 13, 022703 (2006).
 ‡ J. Zhang et al., presented at the 43rd Anomalous Absorption Conference, Stevenson, WA, 7–12 July 2013.
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The hohlraum is the environment for the  
National Ignition Facility (NIF) x-ray-drive capsule
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X-Ray Drive
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Sufficient illumination symmetry can be obtained 
by a suitable repointing of the NIF beams*

No equatorial
beams

Polar Drive

Direct-drive experiments on the NIF require  
the nonspherically symmetric polar-drive geometry

TC10832 *S. Skupsky et al., Phys. Plasmas 11, 2763 (2004).
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In both x-ray and direct-drive approaches to ICF,  
multiple intense laser beams overlap in plasma
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There are differences in interaction conditions between 
x-ray drive and polar drive (PD)

TC10979

Isingle ~ 1015 W/cm2 (tightest focus at LEH)
Scale lengths ~ mm’s

Large LPI gains

Isingle ~ 1014 W/cm2

Scale lengths ~ 0.5 mm
Small LPI gains

3.5 mm
Laser entrance hole (LEH)3.5 mm
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Hohlraum figure from P. Michel et al., Phys. Rev. Lett. 102, 025004 (2009).



Ignition designs do not generally exceed single-beam 
laser–plasma instability thresholds

TC10980 

• Unmagnetized plasmas support electromagnetic (EM) waves, 
electron plasma waves (EPW’s), and ion-acoustic waves (IAW’s)

• Three-wave parametric instabilities are the most important:

Type SBS SRS TPD

A1 EM EM EPW

A2 IAW EPW EPW

Simulated Brillouin 
scattering (SBS)

Simulated Raman 
scattering (SRS)

Two-plasmon 
decay (TPD)

kEM

kIAW

kpump

kEM

kEPW
kpump

kEPW,1

kEPW,2

kpump

 Lpump Apump = iCA1 A2

 L1 A1 = iCApump A2

 L2 A2 = iCApump A1

*

*



Parametric instability occurs when wave-number  
and frequency-matching conditions are satisfied
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~pump = ~1 + ~2

k k kpump 1 2= +

The dispersion relations define ~ 
in terms of k for waves of each type
e.g., ~IAW = ±cs k v kIAW IAWf :+

• The presence of plasma inhomogenity was also understood, 
and often leads to a convective instability

A1 = A1,seed exp (G), where G V V
2

1 2

2

l
rC=
l

*

The gain (G) depends on the temporal growth rate (C) squared, the group 
velocities of the daughter waves (V1, V2), and the spatial rate of change of 
phase mismatch ll , 1/L

*M. N. Rosenbluth et al., Phys. Rev. Lett. 29, 565 (1972).

• The essential features (absolute/convective) were determined long 
ago for a single-plane EM pump



kEM

kIAW

kIAW

k pump

k
pump

kEM

Growth rates (or gains)
depend on combined 
intensities.

There are several ways multiple beams can cooperate  
to produce instability

TC10982

• Daughter waves can be shared between decays occuring 
in different beams*

• The instability can be seeded, or “induced,” (Aseed enhanced) 
because one of the daughter waves is present in the laser 
drive or has been produced as a result of the other decays†

SBS

*D. F. DuBois, B. Bezzeridels, and H. A. Rose, Phys. Fluids B4, 241 (1992).
†W. L. Kruer et al., Phys. Plasmas 3, 382 (1996).



Cross-beam (or multibeam) LPI work started  
over 20 years ago 
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• Theoretical/numerical examples:
– Randall et al. 1979, 1981 (LLNL); DuBois et al., (LANL) 1992;  

Kruer et al. 1996 (LLNL); Elissev et al., 1996 (U. Alberta/Canada);  
McKinstrie et al., 1996, 1997 (LLE); Rose and Ghosal, 1998 (LANL); 
Cohen et al., 1998 (LLNL); Williams et al., 2004 (LLNL);  
Hittinger et al., 2005 (LLNL)

• Experimental examples:
– Kirkwood et al. 1996 (Nova/LLNL); Baldis et al. 1996 (LULI/France);  

Lal et al. 1997 (CO2/UCLA); Fernándaz et al. 1998 (Trident/LANL); 
Wharton et al. 1998 (Nova/LLNL); Labaune et al. 1999, 2000  
(LULI/France); Kirkwood et al. 2002 (OMEGA/LLNL);  
Seka et al. 2002 (OMEGA/LLE); Stoeckl et al. 2003 (OMEGA/LLE)

• The investigation for igniton-relevant conditions has only just begun 
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• Introduction

– general concepts

– ignition-scale interaction conditions

– history

• Cross-beam energy transfer (CBET)

• Stimulated Raman scattering (SRS)

• Two-plasmon decay (TPD)

kEM

kEM,seed kIAW

kpump



EM-seeded SBS (cross-beam energy transfer) reduces 
absorption and drive in directly driven targets

E17994d

Cross-Beam Energy Transfer

• Unlike x-ray drive, the presence of supersonic plasma flow 
enables the process to be resonant*

• Three-wave SBS equations  
are computed (pairwise)  
for each beam crossing  
using a generalization  
of Randall et al.* and are  
implemented in-line in  
1-D LILAC

Because the EM 
seed amplitude 
is large, small 
gains affect the 
absorbed energy. –800
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C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981);
K. B. Wharton et al., Phys. Rev. Lett. 81 2248 (1998);
B. I. Cohen et al., Phys. Plasmas 5 3408 (1998);
H. A. Rose and S. Ghosal, Phys. Plasmas 5 1461 (1998).

*



In-line CBET models have been developed  
and tested on OMEGA

TC10267e

Hydrodynamic scaling 

Direct drive
NIF 1.8 MJ

3.6 mm

0.86 mm 

OMEGA 26 kJ

Capsule radius ~ EL

Laser power ~ EL

Pulse length ~ EL
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• OMEGA implosions are designed to be hydrodynamically 
equivalent to those on the NIF

R. Nora, GI3.00002, this conference (invited).
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Direct-drive simulations that include nonlocal heat transport 
and CBET match the experimental observables on OMEGA*
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Good agreement with experiments is achieved 
with no free parameters (small power transferred).

• Spherically symmetric direct drive

* I. V. Igumenshchev et al., Phys. Plasmas 19, 056314 (2012);
 D. H. Froula et al., Phys. Rev. Lett. 108, 125003 (2012).



 * W. Seka et al., Phys. Plasmas 15, 056312 (2008); I. V. Igumenshchev et al., Phys. Plasmas 19, 056314 (2012);
  D. H. Edgell et al., Bull. Am. Phys. Soc. 52, 195 (2007); ibid. 53, 168 (2008); ibid. 54, 145 (2009).
 ** T. Dewandre, J. R. Albritton, and E. A. Williams, Phys. Fluids 24, 528 (1981).

CBET was inferred on OMEGA by a detailed spectroscopic 
analysis of the time-resolved reflected light*

E19972f

• The time rate of change of an optical path for a given ray trajectory 
results in a frequency shift** that can be calculated in the simulation

• The best agreement is found when the CBET model is 
implemented together with nonlocal thermal transport

Experimental
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No CBET " oblate implosions caused 
by impaired inner beams propagating

Capsule self- 
emission (~9 keV)
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In x-ray-drive experiments on the NIF, P2 symmetry  
is tuned by CBET (by adjusting Dm = minn – mout)

TC10846 P. Michel et al., Phys. Plasmas 17, 056305 (2010);  S. H. Glenzer et al., Science 327, 1228 (2010).

• More energy is tranferred to the inner beams as Dm increases because 
the induced SBS process becomes closer to resonance
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Linear calculations
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In x-ray drive, calculations based on linear kinetic models 
work well at small power transfers but not at large ones

TC10847

• The same linear kinetic response for CBET is used at LLNL, LLE, and CEA
• LLNL’s CBET model includes an arbitrary saturation parameter because gains are larger 

in x-ray drive, although recent work on quasilinear ion heating may remove the need*
• Such models may be suitable for in-line implementation

*P. Michel, et al., Phys. Rev. Lett. 109, 195004 (2012);
 E. A. Williams et al., Phys. Plasmas 11, 231 (2004).



As expected, early NIF (PD) experiments show  
a reduction in ablation-surface velocity
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• Implementing a CBET model is more computationally expensive for 
PD because of the reduced symmetry and complex ray trajectories, 
although much progress has been made*

*J. A. Marozas et al., CO7.00004, this conference.



The predicted scattered light is strongly anisotropic
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• The cumulative scattered light is concentrated in a narrow range of 
angles i sampled by the two near-backscatter imaging (NBI) plates

NBI 36B

NBI 31B
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Preliminary calculations indicate that shifting 
the wavelength between polar-drive cones could 
significantly alter the energy exchange*†

E21282a

• The ring structure of PD 
allows similar beams to be 
wavelength shifted as a group

• Preliminary calculations 
suggest wavelength shifting 
can balance the rings or steer 
power to the equator

• Dm ~ 5Å (at 3~) can  
mitigate CBET*

• Will be tested on the NIF

• The process is similar to Dm in x-ray drive, but more complicated 
because of the number of possible resonances
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*I. V. Igumenshchev et al., Phys. Plasmas 19, 056314 (2012);
†D. H. Edgell et al., presented at the 43rd Anomalous Absorption Conference, Stevenson, WA, 7–12 July 2013.
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CBET results in a modified laser-intensity distribution 
downstream of the interaction region in x-ray drive

TC10851

Laser
entrance

hole (LEH)

Wall

Inner beam after CBET
refraction, absorption 

Beam
cross

sections

Inner beam before CBET
refraction, absorption 

0

1
I/Imax

SRS region
CBET region

30° inner 
beam quad

Schematic of ignition hohlraum*

• In x-ray drive, stimulated Raman scattering (SRS) occurs 
downstream of the CBET region

• Codes must be pieced together (separation in scales)

*D. E. Hinkel, presented at the HEDP Summer School, Columbus, OH, 15–19 July 2013.



LLNL pF3D* calculations demonstrate that multiple inner 
beam quads share a reflected light wave

TC10852

With three interacting quads, the simulated reflectivity approaches the measurement**

Shot Energy (MJ) Time (ns) 30° SRS 
measurement (TW)

Three-quad pF3D  
prediction (TW)

N091204 1.05 19 1.3 1.0

• pf3D is a massively parallel, paraxial fluid-based LPI code*

• Experimental observables are matched when the multibeam 
interaction is taken into account**

 * R. L. Berger et al., Phys. Plasmas 5, 4337 (1998).
 ** D. E. Hinkel et al., Phys. Plasmas 18, 056312 (2011); 
  D. E. Hinkel, presented at the HEDP Summer School, Columbus, OH, 15–19 July 2013.
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Higher plasma temperatures reduce LPI  
and require a smaller Dm

TC10848

• High-Z gas-filled hohlraums show good performance 
while using less cross-beam transfer*

• Mid-Z ablators have been designed for PD implosions

G ~ I ne/Te

*D. E. Hinkel, presented at the HEDP Summer School, Columbus, OH, 15–19 July 2013.
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• Hot electrons are produced by linear wave–particle interactions  
(Landau damping) and nonlinear kinetic processes

• Important because of potential loss of drive and preheat (0.1% tolerable)

• Laser energy is transferred to plasma waves

In polar-drive, two-plasmon decay occurs at nc/4, 
potentially in competition with CBET



Laser beams can cooperate to drive TPD  
most strongly where the single-beam  
maximum growth-rate curves overlap

TC10984

kEPW,1

kEPW,2

kpump,1
"

Single-beam
maximum 
growth-rate curve



kpump,2

Maximum growth

kpump,1
"
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Laser beams can cooperate to drive TPD  
most strongly where the single-beam  
maximum growth-rate curves overlap



IR is the intensity (at nc /4) that 
is the sum over participating beams

Multibeam
convective

kEPW,2

kEPW,2

kEPW,C

Gc .
(1 keV)

IR /(1014 W/cm2) Ln /(100 nm)

kpump,2
"

dn

kpump,2
"

Multibeam convective gains have been  
calculated for TPD*

TC10984b

*D. T. Michel et al., Phys. Plasmas 20, 055703 (2013);
  D. T. Michel et al., Phys. Rev. Lett. 109, 055007 (2012).



• Saturation is seen below the nominal convective threshold (G K 2r)

• This might be related to the presence of absolute instability†

Different OMEGA and OMEGA EP experiments  
are reconciled when shared convective TPD waves  
are considered*

E21699g
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 * D. T. Michel et al., Phys. Plasmas 20, 055703 (2013);
  D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).
 † R. W. Short et al., BO4.00009, this conference.
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The possibility of an absolute form of multibeam TPD 
has only recently been identified*
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• The determination of an absolute versus convective form  
of instability in inhomogeneous plasma is a classic problem  
(solved a long time ago for plane EM waves†)

*R. W. Short et al., BO4.00009, this conference.
†A. Simon et al., Phys. Fluids 26, 3107 (1983).
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The absolute thresholds for different numbers of beams 
and beam configurations have been computed*
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The absolute thresholds for different numbers of beams 
and beam configurations have been computed*
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The absolute threshold is lower than the convective threshold in most 
cases; the regime of linear convective growth is restricted.

*R. W. Short et al., BO4.00009, this conference;
 J. Zhang et al., presented at the 43rd Anomalous Absorption Conference, Stevenson, WA, 7–12 July 2013.
†A. Simon et al., Phys. Fluids 26, 3107 (1983).
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• Linear convective gain calculations assume a common plasma wave 

• Particle-in-cell (PIC) calculations are being used to provide insight  
into the mechanisms of hot-electron production and saturation

– OSIRIS,1 RPIC2

– 3-D calculations are difficult, but the 3-D geometry is essential3,4

• An extended Zakharov model5 provides a practical middle ground that 
addresses the multiscale problem by harmonic decomposition

– ZAK3D contains linear instability of multiple beams in three dimensions4

– it incorporates the important nonlinearities that lead to saturation

– kinetic effects are included in the quasilinear approximation 
(QZAK computes hot-electron production6)

 1 R. Yan et al., Phys. Rev. Lett. 108, 175002 (2012).
 2 H. X. Vu et al., Phys. Plasmas 19, 102703 (2012).
 3 H. Wen et al., BO4.00005, this conference.
 4 J. Zhang et al., presented at the 54th Annual Meeting of the APS Division  
  of Plasma Physics, Providence, RI, 29 October–2 November 2012.
 5 D. F. DuBois, D. A. Russell, and H. A. Rose, Phys. Rev. Lett. 74, 3983 (1995);  
  D. A. Russell et al., Phys. Rev. Lett. 86, 428 (2001).
 6 J. F. Myatt et al., Phys. Plasmas 20, 052705 (2013).

Several approaches are being used to predict  
multibeam TPD
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Comparison between ZAK3D and convective gain 
for four beams with parallel polarization shows 
consistency for large wave numbers
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The presence of absolute instability requires 
a treatment of nonlinear saturation.



TPD is always a nonlinear problem because of the small 
domain of linear convective growth, even when driven  
by multiple beams
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Quasilinear evolution of the hot-electron distribution function 
appears to be valid because of the broad EPW spectrum

TC9801c

• Acceleration of electrons is a stochastic process modeled by

 the diffusion equation

• QZAK (an extension of ZAK3D) calculations predict  
a broad divergence angle for hot electrons*
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Experimentally, TPD hot electrons are inferred  
to be emitted isotropically
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• This can reduce the fraction of TPD hot 
electrons that contribute to preheat



The extrapolation of experimental OMEGA/OMEGA EP 
multibeam TPD results to the NIF is not straightforward—
experiments are necessary

TC10855

• The linear dependence of the gain or scale length comes from linear 
theory, but TPD is always nonlinear because of absolute instability

• Experimentally, there are significant differences between  
OMEGA/OMEGA EP and the NIF (besides density scale length)

– NIF has 2× higher electron temperature (mD larger by 2 )

– PD NIF has lower beam symmetry than OMEGA

– EPW and IAW collisional effects differ between  
OMEGA and the NIF

• LLE is investigating a model that accounts for these effects (ZAK3D)*

• Ignition-scale experiments are being performed on the NIF

*J. Zhang et al., BO4.00006, this conference.



The first measurements of >50-keV electrons for PD  
on the NIF indicate a tolerable level of preheat
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N130731 I ~ 8 × 1014 W/cm2
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• The energy of electrons above 50 keV is 1600 J or ~0.3% 
of the laser energy (Thot ~ 45 keV)

• Ignition designs can tolerate up to ~0.4% of laser energy in hot 
electrons, corresponding to 0.1% preheat because of divergence



Multilayer targets promise to reduce the deleterious 
effect of multibeam LPI

TC10544d

NIF

125-nm DT

1- to 2-nm mid-Z (Z = 6 to 14, Si)
CH

CH

1350 nm
• Mid-Z layer: Reduces LPI at 

      quarter-critical surface

(Similar to x-ray drive higher-Z fill gas)



The higher predicted electron temperature in the corona  
of the multilayer design has a mitigating effect*
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*V. N. Goncharov, GI3.00001, this conference (invited).
†M. Lafon et al., UO4.00010, this conference;

• Increased plasma collisionality also plays a role†



Nonlinear ZAK3D/QZAK simulations suggest there may 
be extra mitigating effects of mid-Z layers

• Ion-wave damping
– saturated EPW intensity and hot-electron production depends on oIAW*  

(a nonlinear effect, similar to that observed for SRS)**
• Collisional damping

– for NIF-scale lengths, the LW collisional damping can become important* 
(increases linear threshold, linear and nonlinear*,† LPI effect)

TC10463b

  V. A. Smalyuk et al., Phys. Rev. Lett. 104, 165002 (2010). 
 * J. F. Myatt et al., Phys. Plasmas 20, 052705 (2013); M. Lafon et al., UO4.00010, this conference.
 ** J. C. Fernández et al., Phys. Rev. Lett. 77, 2702 (1996); Kirkwood et al., Phys. Rev. Lett. 77, 2706 (1996).
 † R. Yan et al., Phys. Rev. Lett. 108, 175002 (2012).
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Summary/Conclusions

TC10364b

The overlapping of many laser beams in a plasma leads  
to cooperative laser–plasma instabilities (LPI’s)

• Significant advances have been made toward understanding 
nonlinear propagation and absorption of laser light in the face of 
multibeam parametric instabilities

• Cross-beam energy transfer (CBET) has been identified in both 
direct- and x-ray-drive inertial confinement fusion (ICF)

• Multibeam two-plasmon decay is seen to be important in direct 
drive, while multibeam stimulated Raman scattering is implicated 
in x-ray drive


