Comparison of 2-D *DRACO* Cross-Beam Energy Transfer (CBET) Simulations with OMEGA and NIF Experiments

NIF shot 130225

DRACO; iSNB

J. A. Marozas
University of Rochester
Laboratory for Laser Energetics

55th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 11–15 November 2013

Summary

DRACO provides self-consistent cross-beam energy transfer (CBET) simulations that agree with experiments

- CBET increases scattered light through stimulated Brillouin scattering (SBS) of outgoing rays that removes energy from incoming high-energy rays
- The 2-D hydrodynamics code DRACO employs feedback control to maintain energy balance with CBET
- CBET improves agreement of hydrocodes with experiment

Collaborators

T. J. B. Collins, J. A. Delettrez, P. B. Radha, P. W. McKenty, I. V. Igumenshchev, D. H. Edgell, D. H. Froula, M. Hohenberger, F. J. Marshall, D. T. Michel, and W. Seka

University of Rochester Laboratory for Laser Energetics

A. J. Mackinnon, S. LePape, and T. Ma Lawrence Livermore National Laboratory

D. Cao, A. Prochaska, J. Chenhall, and G. Moses
University of Wisconsin

CBET* occurs nearly uniformly over the entire target for OMEGA 60-beam direct drive

 OMEGA direct drive offers a high amount of symmetry, which is reflected in the CBET gain power density (W/cm³)

 The CBET effect can be successfully mitigated by reducing the beam diameter**

^{*}C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids <u>24</u>, 1474 (1981). **I. V. Igumenshchev et al., Phys. Plasmas 19, 056314 (2012).

CBET modeling in the 2-D hydrodynamics code *DRACO* employs an angular spectrum representation (ASR) approach with feedback control

- ASR captures the relevant intensity and direction information from all the beams that propagate through any cell
- Feedback through a PID-controller (proportional-integral-differential) loop provides vital control over CBET energy balance
 - left uncontrolled, CBET equations do not conserve energy;
 e.g., they lack energy depletion
 - feedback minimizes energy imbalance through a controlled PID loop by temporarily adjusting the ASR until the adjustment approaches zero
- The ASR from the previous time step is used to increase the convergence rate by providing an estimate of the current time step's ASR

A 40-beam subset of the 60-beam OMEGA laser emulates the NIF x-ray-drive configuration

NIF configuration

Ring 2 Ring 3

OMEGA PD configuration

OMEGA PD shot 64099 simulations predict the increased scattered light around the poles of the chamber

- OMEGA shot 64099 employed a set of calorimeters around the chamber to measure the theta dependence of scattered light
- DRACO simulations of shot 64099 reproduce the measured data with CBET;
 flux limiters of 6% and 10% bracket the data; iSNB* improves the agreement

The NIF N130225 PD shot was used to commission neutron diagnostics

- N130225 is a 130-kJ, 1523- μ m-diam target: Peak $I=1.6\times 10^{15}\,\mathrm{W/cm^2}^{-1.0}$
- Beams were refocused and repointed to improve implosion symmetry using current optics
- The gated x-ray diagnostic (GXD-3) framing camera shows a distinctive square shape

NIF shot 130225

The blue curve is the the maximum likeliehood estimate of the peak emission. Image is 1500 μ m imes 1500 μ m.

A high-intensity NIF glass exploding-pusher target shot N130225 demonstrates the need for the CBET model

- N130225 is a 130-kJ, 1523- μ m-diam target: Peak $I = 1.6 \times 10^{15} \text{ W/cm}^2$
- Simulations* include the DRACO nonlocal thermal transport model iSNB**

The simulation without CBET underdrives the target poles

^{*}Processed with Spect3D; Prism Computational Sciences, Inc. Madison, WI 53711 **J. A. Delettrez et al., UO4.00007, this conference.

Summary/Conclusions

DRACO provides self-consistent cross-beam energy transfer (CBET) simulations that agree with experiments

- CBET increases scattered light through stimulated Brillouin scattering (SBS) of outgoing rays that removes energy from incoming high-energy rays
- The 2-D hydrodynamics code DRACO employs feedback control to maintain energy balance with CBET
- CBET improves agreement of hydrocodes with experiment

CBET increases the polar drive in N130129 iSNB simulations that is not visible in experimental data

- Shell trajectories are consistent among all three
- A timing difference of ~100 ps exists between simulations
- Including CBET effect reduces the absorption fraction which improves the agreement of bang time but degrades the agreement in shape

