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Direct-Drive–Ignition Designs with Moderate-Z Ablators
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Summary

Moderate-Z ablator materials are studied
as an alternative to CH for mitigating the effect
of laser–plasma instabilities

TC10890

•	 Cryogenic targets with higher Z than plastic have a higher 
two-plasmon–decay (TPD) intensity threshold and possibly 
less hot-electron preheat

•	 Ignition targets using mid-Z ablators can be designed
	 in one dimension with cross-beam energy transfer (CBET)

•	 Ignition designs using mid-Z ablators are developed
	 and simulated in one and two dimensions for direct-drive 

and polar-drive configurations 
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Moderate-Z materials are predicted to mitigate the 
generation of hot electrons caused by the TPD instability 
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•	 The TPD threshold parameter*
	 is defined as

•	 Moderate-Z ablator materials may 
help reduce the TPD instability at 
quarter-critical density because of

–	 higher electron temperature

–	 better absorption leading to 
lower intensity

–	 higher collisional damping

–	 lower damping of ion-acoustic 
waves (IAW’s)
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*A. Simon et al., Phys. Fluids 26, 3107 (1983).
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Hydro-equivalent ignition targets have been designed 
for the NIF using CH, HDC, and SiO2 ablators

TC10892

vimp (km/s) ~360

EL (MJ) ~1.6

Adiabat ~2.0

IL (W/cm2) ~1.2 × 1015

ITF*1-D ~4.0 T. J. B. Collins et al., Phys. Plasmas 19, 056308 (2012).
*Ignition threshold factor

Flux limiter f = 0.06



Mid-Z ablators exhibit lower TPD linear growth rates
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•	 The normalized TPD growth rate* is

*A. Simon et al., Phys. Fluids 26, 3107 (1983).

Mid-Z materials present higher coronal temperature and more 
collisional damping, leading to higher TPD threshold.
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All three ignition designs are robust to several 
times the inner-ice and outer-surface roughness 
NIF specifications

TC10899

Mid-Z ablator designs tolerate over 3-nm rms and 1-nm rms, respectively, 
for inner-ice roughness and outer-surface roughness.

0
0.0

0.2

0.4

0.6

0.8

1.0

1 2
Inner-ice roughness (nm rms)

N
o

rm
al

iz
ed

 g
ai

n

4 5 63 0 300
Outer-surface roughness (nm rms)

NIF specification
for outer-surface

roughness

900 1200600

CH
HDC
SiO2NIF specification

for inner-ice
roughness



Both high-density carbon (HDC) and glass designs still 
produce high gains under laser-imprint perturbations
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•	 Density at onset of ignition for laser-imprint simulations
	 with , <100 (2-D SSD*)
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The robustness of mid-Z designs is currently 
investigated using the polar-drive configuration

TC10900
S. Skupsky et al., Phys. Plasmas 11, 2763 (2004).
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A glass target ignites with cross beam energy 
transfer (CBET) in 1-D, giving a gain of 30

TC10897

Without CBET With CBET

habs (%) 95 65

Vimp (km/s) 440 327

IFAR2/3 61 40

Gain 20 30
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Summary/Conclusions
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Moderate-Z ablator materials are studied
as an alternative to CH for mitigating the effect
of laser–plasma instabilities

•	 Cryogenic targets with higher Z than plastic have a higher 
two-plasmon–decay (TPD) intensity threshold and possibly 
less hot-electron preheat

•	 Ignition targets using mid-Z ablators can be designed
	 in one dimension with cross-beam energy transfer (CBET)

•	 Ignition designs using mid-Z ablators are developed
	 and simulated in one and two dimensions for direct-drive 

and polar-drive configurations 


