Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas

R. J. Henchen University of Rochester Laboratory for Laser Energetics 55th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 11–15 November 2013

Time-resolved UV Thomson-scattering spectra show that multilayer targets have higher coronal electron temperatures than CH targets

- Experiments compared layered spherical shells containing Si-doped CH, Si, and Be to CH targets in direct-drive implosions
- Measurements from UV Thomson scattering show that multilayer targets have 10% higher electron temperatures than CH targets at the end of the drive
- Multilayer targets reduce the hot electrons from two-plasmon decay (TPD)

V. N. Goncharov, D. T. Michel, R. K. Follett, J. Katz, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

Motivation

Multilayer targets are designed to reduce imprint and laser–plasma instabilities (LPI's), and increase the hydrodynamic efficiency

*S. X. Hu et al. Phys. Rev. Lett. 108, 195003 (2012); G. Fiksel et al., Phys. Plasmas 19, 062704 (2012).

UR

** D.T. Michel et al. "Demonstration of the Improved Rocket Efficiency in Direct-Drive

Implosions using Different Ablator Materials," submitted to Physical Review Letters;

D. T. Michel et al., NO7.00002, this conference; V. N. Goncharov, Gl3.00001, this conference.

Plasmas are well characterized by a suite of diagnostics at the Omega Laser Facility

ROCHESTER

Simulations of scattered light and trajectories are in agreement with the measurements

Simultaneous measurements of collective Thomson scattering from ion-accoustic waves (IAW's) and electron plasma waves (EPW's) provide local plasma coditions

CHESTER

Adjusting plasma parameters within the noise of the data determines the accuracy of the fit

LL

ROCHESTER

Electron temperature is higher in the coronal plasma of multilayer targets than in CH targets at the end of the drive

The difference in electron temperature between the two types of targets is more evident closer to the target

The higher coronal temperatures reduce two-plasmon-decay produced hot electrons

LL

Multilayer targets produce $8 \times$ fewer hot electrons than CH targets.

Summary/Conclusions

Time-resolved UV Thomson-scattering spectra show that multilayer targets have higher coronal electron temperatures than CH targets

• Experiments compared layered spherical shells containing Si-doped CH, Si, and Be to CH targets in direct-drive implosions

UR 🔌

- Measurements from UV Thomson scattering show that multilayer targets have 10% higher electron temperatures than CH targets at the end of the drive
- Multilayer targets reduce the hot electrons from two-plasmon decay (TPD)

