A New Neutron Time-of-Flight Detector for Areal Density Measurements on OMEGA

PMT1 PMT4 PMT3

Detector model

V. Yu. Glebov University of Rochester Laboratory for Laser Energetics

ROCHESTER

55th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 11–15 November 2013

A new neutron time-of-flight (nTOF) detector for arealdensity measurements was implemented on OMEGA

- The new OMEGA 8 \times 4 nTOF detector
 - has an 8-in.-diam, 4-in.-thick scintillator cavity
 - uses an oxygenated xylene scintillator
 - uses four fast-gated photomultiplier tubes (PMT's) with different gains
- More measurements can be made on a single shot
 - measure primary DT yield
 - measure nT edge part of the spectrum to calculate* ho R
 - measure nD edge part of the spectrum to calculate* $ho {\it R}$
 - to study neutrons with *E* > 14 MeV

C. J. Forrest, K. L. Marshall, A. Pruyne, M. Romanofsky, T. C. Sangster, M. J. Shoup III, and C. Stoeckl

> University of Rochester Laboratory for Laser Energetics

A time-of-flight neutron spectrum in DT implosion consists of at least six separate neutron contributions

UR 🔌

Several gated PMT's with different sensitivity are needed to record separate parts of neutron spectrum.

The 8 \times 4 nTOF detector has a thin-wall stainless-steel cavity filled with an oxygenated xylene scintillator*

Detector model PMT2 PMT⁻ PMT3 **PMT4**

Scintillator body during manufacturing

*C. Stoeckl et al., Rev. Sci. Instrum. <u>81</u>, 10D302 (2010).

E22603

The 8 \times 4 nTOF detector is located in the collimated line of sight 13.4 m from target chamber center (TCC) on OMEGA

The primary DT neutrons were measured by an ungated PMT140 with gain of 8.6×10^2

The areal density is measured in the nT-edge region by gated PMT240 with gain of 6.2×10^3

*Magnetic recoil spectrometer

The 8 \times 4 nTOF detector with a fast gated PMT measured a high-resolution nD kinematic edge below 2 MeV

The signal below 1.5 MeV consist of the residual neutron scattering background, TT reaction , and a deuteron breakup contribution.

The 8 \times 4 nTOF with a new PMT demonstrated the technical ability to measure neutrons with E > 14 MeV

Summary/Conclusions

A new neutron time-of-flight (nTOF) detector for arealdensity measurements was implemented on OMEGA

- The new OMEGA 8 \times 4 nTOF detector
 - has an 8-in.-diam, 4-in.-thick scintillator cavity
 - uses an oxygenated xylene scintillator
 - uses four fast-gated photomultiplier tubes (PMT's) with different gains
- More measurements can be made on a single shot
 - measure primary DT yield
 - measure nT edge part of the spectrum to calculate* ho R
 - measure nD edge part of the spectrum to calculate* ho R
 - to study neutrons with E > 14 MeV

