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Summary

E22428

Experiments to validate these schemes are underway.

Reducing cross-beam energy transfer (CBET) on OMEGA 
will allow for more stable ignition-relevant implosions

• CBET can be mitigated by reducing the diameter of the laser beams

• Mitigating CBET increases the ablation pressure, allowing for thicker 
shelled targets and higher adiabats

• Two approaches are being investigated on OMEGA to reduce 
the laser beams

– smaller laser spots—reduced beam-to-beam overlap

– two-state zooming—increased single-beam imprint
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CBET reduces the energy coupled  
to the fusion capsule

E19971d

CBET reduces the most hydrodynamically 
efficient portion of the incident laser beams.

Target

CBET is spatially
limited near M ~ 1

Energy is transferred
between beams 
by ion-acoustic 
waves 
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 * I. V. Igumenshchev et al., Phys. Plasmas 19, 056314 (2012).
  ** D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012).

CBET modeling is required to match the experimental 
observables (scattered light, implosion velocity, 
and bang time)*  

CBET reduces the ablation pressure by ~45%.



Experiments have demonstrated that CBET can be 
mitigated by reducing the radius of laser beams
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*D. H. Froula et al., Phys. Rev. Lett. 108, 125003 (2012).
*V. N. Goncharov, GI3.00001, this conference (invited).

Reducing the radius of the beams will allow the thickness of the 
shell and the adiabat to be increased in a hydro-equivalent design 
but the reduced overlap uniformity may increase the imprint.
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Simulations suggest that reducing the beam diameters 
by 20% (Rb/Rt = 0.8) will have minimal impact on the hot-
spot symmetry

TC9894 I. V. Igumenshchev et.al., Phys. Plasmas 19, 056314 (2012).
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Reducing the beam diameters by more than 20% significantly 
degrades the target performance.

2-D DRACO simulations
(low-order nonuniformities only)
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*I. V. Igumenshchev et al., Phys. Rev. Lett. 110, 145001 (2013).

Reducing the diameter of the laser beams beyond 20% 
after a sufficient conduction zone is generated (“zooming”)  
is predicted to maintain good low-mode uniformity

E21317l
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*I. V. Igumenshchev et al., Phys. Rev. Lett. 110, 145001 (2013).

Reducing the diameter of the laser beams beyond 20% 
after a sufficient conduction zone is generated (“zooming”)  
is predicted to maintain good low-mode uniformity

E21317m

rms deviation from round (v)
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*I. V. Igumenshchev et al., Phys. Rev. Lett. 110, 145001 (2013).

Reducing the diameter of the laser beams beyond 20% 
after a sufficient conduction zone is generated (“zooming”)  
is predicted to maintain good low-mode uniformity

E21317n
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Zooming can be implemented on OMEGA using a radially 
varying phase plate and a dynamic near field

E22039b D. H. Froula et al., Phys. Plasmas 20, 082704 (2013).
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E22229b T. C. Sangster et al., Phys. Plasmas 20, 056317 (2013).

Implementing zooming on OMEGA will provide 
a more-robust implosion to hydrodynamic instabilities

Both CBET mitigation strategies on OMEGA will allow the mass of the shell 
and the adiabat to be increased while maintaining ignition-relevant conditions.
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Summary/Conclusions

Experiments to validate these schemes are underway.

Reducing cross-beam energy transfer (CBET) on OMEGA 
will allow for more stable ignition-relevant implosions

• CBET can be mitigated by reducing the diameter of the laser beams

• Mitigating CBET increases the ablation pressure, allowing for thicker 
shelled targets and higher adiabats

• Two approaches are being investigated on OMEGA to reduce 
the laser beams

– smaller laser spots—reduced beam-to-beam overlap

– two-state zooming—increased single-beam imprint


