Effect of Nonlocal Thermal-Electron Transport on the Symmetry of Polar-Drive Experiments

J. A. Delettrez University of Rochester Laboratory for Laser Energetics 55th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 11–15 November 2013

Nonlocal electron transport must be considered to model polar-drive implosions

- A 2-D nonlocal electron thermal-transport model (iSNB)* has been added to the 2-D hydrodynamics code DRACO
- The warm CH shell NIF** shot N130731 was simulated with both flux-limited electron-heat transport and the iSNB model
- The iSNB model resulted in higher drive near the equator from
 - higher electron temperatures than at the pole
 - larger effective radial flux limiter in the transport region
- Simulations of polar-drive implosions requires modeling both nonlocal thermal electron transport and cross-beam energy transfer (CBET)***

UR 🔌

TC10839

^{*}Implicit Schurtz–Nicolaï–Busquet model **National Ignition Facility

^{***}J. Marozas et al., CO7.00004, this conference;

T. J. B. Collins et al., UO4.00008, this conference.

T. J. B. Collins, P. W. McKenty, P. B. Radha, S. X. Hu, S. Skupsky, F. J. Marshall, S. To, and A. Shvydky

> University of Rochester Laboratory for Laser Energetics

D. Cao, A. Prochaska, J. Chenhall, and G. Moses

University of Wisconsin

The 2-D iSNB scheme in DRACO was developed at the University of Wisconsin*

- One-dimensional simulations have shown that nonlocal heat transport is required to reproduce experimental results**
- The iSNB scheme in DRACO uses a modified implicit version of the Schurtz–Nicolaï–Busquet model***
- A correction to the local Spitzer flux is obtained from a set of multi-energy-group diffusion equations, which are iterated to a self-consistent solution

^{*}D. Cao et al., TP8.00081, this conference.

^{**}I. V. Igumenshchev et al., Phys. Plasmas <u>19</u>, 056314 (2012).

^{***}G. P. Schurtz, Ph. D. Nicolaï, and M. Busquet, Phys. Plasmas 7, 4238 (2000).

A Eulerian simulation was carried out for polar-drive NIF shot N130731* with the iSNB model

$$I_{\rm L}$$
 ~ 8 × 10¹⁴ W/cm²

Simulations were also carried out for two values of the flux limiter: 0.06 (standard) and 0.1.

E22290c

*P. B. Radha et al., UO4.00001, this conference.

Nonlocal transport drives the equator more strongly than the f = 0.06 flux-limited Spitzer transport

Simulation images generated at ~5.5 ns with Spect3D*

The drive at the equator is more sensitive to the flux limiter and nonlocal transport than at the pole

Profiles taken at 6 ns

The radial effective flux limiter (f_{eff}) is higher at the equator than at the pole because of the higher coronal temperature

The nonlocal radial effective flux limiter at the equator is larger than that for f = 0.1 near the peak laser deposition

LLE

Simulations cannot be carried out with a single flux limiter.

Simulations with CBET will make the oblate simulation image prolate*

CBET reduces absorption mostly at the equator, reducing the drive and improving agreement with the experimental shape.

TC11039

^{*}J. Marozas et al., CO7.00004, this conference;

T. J. B. Collins et al., UO4.00008, this conference.

Nonlocal electron transport must be considered to model polar-drive implosions

- A 2-D nonlocal electron thermal-transport model (iSNB)* has been added to the 2-D hydrodynamics code DRACO
- The warm CH shell NIF** shot N130731 was simulated with both flux-limited electron-heat transport and the iSNB model
- The iSNB model resulted in higher drive near the equator from
 - higher electron temperatures than at the pole
 - larger effective radial flux limiter in the transport region
- Simulations of polar-drive implosions requires modeling both nonlocal thermal electron transport and cross-beam energy transfer (CBET)***

UR 🔌

TC10839

^{*}Implicit Schurtz–Nicolaï–Busquet model **National Ignition Facility

^{***}J. Marozas et al., CO7.00004, this conference;

T. J. B. Collins et al., UO4.00008, this conference.