Three-Dimensional Modeling of X-Ray Self-Emission Images on NIF Polar-Drive Implosions

A. K. Davis University of Rochester Laboratory for Laser Energetics 55th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 11–15 November 2013

LLE

Summary

X-ray self-emission imaging* was used on National Ignition Facility (NIF) polar-drive experiments to observe 3-D target nonuniformities during the implosion

- A 3-D postprocessor was created to calculate self-emission images using 3-D profiles obtained from SAGE hydrodynamic simulations
- Modeling reproduces the target shape when two NIF quads were dropped
- Predicted deviations of ~10 μm resulting from beam-energy variations are observed with the self-emission diagnostic

UR 🔌

D. T. Michel, R. S. Craxton, R. Epstein, M. Hohenberger, T. C. Sangster, P. B. Radha, T. Mo, and D. H. Froula

> University of Rochester Laboratory for Laser Energetics

X-ray framing-camera images of the target self-emission provide information on the symmetry of the target outer radius

Self-emission imaging provides 3- μ m accurate measurement of the radius perpendicular to the diagnostic plane.

The 3-D postprocessor calculates self-emission images by integrating the radiation transfer equation through a 3-D model of the target

The total intensity calculation incorporates a wide range of frequencies using multigroup methods.

The calculated intensity is filtered and convolved to accurately compare with the experiment

For the NIF images, a 25.4- μ m Be filter and a 60- μ m convolution are used.

The calculated intensity is filtered and convolved to accurately compare with the experiment

For the NIF images, a 25.4- μ m Be filter and a 60- μ m convolution are used.

The calculated intensity is filtered and convolved to accurately compare with the experiment

For the NIF images, a 25.4- μ m Be filter and a 60- μ m convolution are used.

The effects of power balance are observed in the polar self-emission images for a uniform shot

ROCHESTER

Two quads were dropped on a NIF polar-drive experiment, creating large nonuniformities observed in the self-emission images

For $R \approx 600 \ \mu m$, deviations in the target radius resulting from the missing quads are well-reproduced by the model

UNIVER:

Calculated self-emission images agree well with experimental images taken from the polar direction

ROCHESTER

Summary/Conclusions

X-ray self-emission imaging* was used on National Ignition Facility (NIF) polar-drive experiments to observe 3-D target nonuniformities during the implosion

- A 3-D postprocessor was created to calculate self-emission images using 3-D profiles obtained from SAGE hydrodynamic simulations
- Modeling reproduces the target shape when two NIF quads were dropped
- Predicted deviations of ~10 μm resulting from beam-energy variations are observed with the self-emission diagnostic

UR 🔌