Three-Dimensional Modeling of X-Ray Self-Emission Images on NIF Polar-Drive Implosions

A. K. Davis
University of Rochester
Laboratory for Laser Energetics

Experimental image N130703, $t_{\text{NIF}} = 6.0$ ns

Calculated image SAGE run 6343, $t_{\text{NIF}} = 5.9$ ns

55th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
11–15 November 2013
Summary

X-ray self-emission imaging* was used on National Ignition Facility (NIF) polar-drive experiments to observe 3-D target nonuniformities during the implosion.

- A 3-D postprocessor was created to calculate self-emission images using 3-D profiles obtained from SAGE hydrodynamic simulations.
- Modeling reproduces the target shape when two NIF quads were dropped.
- Predicted deviations of $\sim 10 \, \mu m$ resulting from beam-energy variations are observed with the self-emission diagnostic.

Collaborators

D. T. Michel, R. S. Craxton, R. Epstein, M. Hohenberger, T. C. Sangster, P. B. Radha, T. Mo, and D. H. Froula

University of Rochester
Laboratory for Laser Energetics
X-ray framing-camera images of the target self-emission provide information on the symmetry of the target outer radius.

Self-emission imaging provides 3-μm accurate measurement of the radius perpendicular to the diagnostic plane.
The 3-D postprocessor calculates self-emission images by integrating the radiation transfer equation through a 3-D model of the target.

\[\frac{dI_{\nu}}{ds} = \kappa'_{\nu} (B_{\nu} - I_{\nu}) \]

- \(I_{\nu} \) = Specific intensity
- \(B_{\nu} \) = Blackbody term
- \(\kappa'_{\nu} \) = Opacity

The total intensity calculation incorporates a wide range of frequencies using multigroup methods.
The calculated intensity is filtered and convolved to accurately compare with the experiment.

For the NIF images, a 25.4-μm Be filter and a 60-μm convolution are used.
The calculated intensity is filtered and convolved to accurately compare with the experiment.

For the NIF images, a 25.4-μm Be filter and a 60-μm convolution are used.
The calculated intensity is filtered and convolved to accurately compare with the experiment.

SAGE run 6349

Equatorial plane

- Green line: T_e
- Blue line: n_i

Ablation surface

Diagnostic plane

- Blue line: Filtered
- Black line: Data
- Purple line: Filtered and convolved

$t_{\text{NIF}} = 6.5 \text{ ns}$

$t_{\text{NIF}} = 6.0 \text{ ns}$

For the NIF images, a 25.4-μm Be filter and a 60-μm convolution are used.
The effects of power balance are observed in the polar self-emission images for a uniform shot. 10-μm variations caused by beam-energy imbalance can be measured.
Two quads were dropped on a NIF polar-drive experiment, creating large nonuniformities observed in the self-emission images.
For $R \approx 600 \, \mu m$, deviations in the target radius resulting from the missing quads are well-reproduced by the model.

The equatorial radius on the correctly driven side is underestimated by the model.
Calculated self-emission images agree well with experimental images taken from the polar direction.

Measured, $t_{\text{NIF}} = 5.9$ ns

Calculated, $t_{\text{NIF}} = 5.9$ ns

Polar view

$I = 4 \times 10^{14}$ W/cm2

Weak drive at 135°

Missing quads

SAGE (shifted 53 μm)

Data

Run 6343

N130703

t_{NIF} = 5.9 ns

$I = 4 \times 10^{14}$ W/cm2

Weak drive at 135°

Missing quads

SAGE (shifted 53 μm)

Data

Run 6343

N130703

t_{NIF} = 5.9 ns

$I = 4 \times 10^{14}$ W/cm2

Weak drive at 135°

Missing quads

SAGE (shifted 53 μm)

Data

Run 6343

N130703

t_{NIF} = 5.9 ns

$I = 4 \times 10^{14}$ W/cm2

Weak drive at 135°

Missing quads

SAGE (shifted 53 μm)

Data

Run 6343

N130703

t_{NIF} = 5.9 ns

$I = 4 \times 10^{14}$ W/cm2
Summary/Conclusions

X-ray self-emission imaging* was used on National Ignition Facility (NIF) polar-drive experiments to observe 3-D target nonuniformities during the implosion.

- A 3-D postprocessor was created to calculate self-emission images using 3-D profiles obtained from SAGE hydrodynamic simulations.
- Modeling reproduces the target shape when two NIF quads were dropped.
- Predicted deviations of ~10 μm resulting from beam-energy variations are observed with the self-emission diagnostic.

D. T. Michel et al., Rev. Sci. Instr. 83, 10E530 (2012).