Optimization of Azimuthal Uniformity in NIF Polar-Drive Implosions

- Deposited energy

Fraction of maximum

0.65 0.75 0.85 0.95

R. S. Craxton
University of Rochester
Laboratory for Laser Energetics

55th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
11–15 November 2013
The azimuthal uniformity of National Ignition Facility (NIF) polar-drive implosions can be calculated using a pseudo 3-D model in SAGE

- The uniformity is improved with azimuthal repointing of the laser beams
- Predictions of the model match many features of self-emission images for LLE polar-drive shots N130128, N130703, and N130731
- The self-emission diagnostic can detect predicted deviations of \(\sim 10 \mu m \) resulting from beam-energy imbalance

See A. K. Davis (UO4.00004, next talk) for detailed modeling of the x-ray images.
Collaborators

University of Rochester
Laboratory for Laser Energetics

S. LePape, T. Ma, and A. J. Mackinnon

Lawrence Livermore National Laboratory
The alternating quad design results in a large $m = 4$ nonuniformity in the deposited energy.

- Deposited energy
- No CBET

Fraction of maximum

0.65 0.70 0.75 0.80 0.85 0.90 0.95
The split-quad design shows improved azimuthal deposition uniformity with an $m = 8$ pattern

- Deposited energy
- Used for LLE shots N121216, N130128

Fraction of maximum

0.65 0.70 0.75 0.80 0.85 0.90 0.95
More improvement is obtained through the addition of azimuthal repointing

- Deposited energy
- Used for LLE shots N130703, N130731

Fraction of maximum

<table>
<thead>
<tr>
<th>0.65</th>
<th>0.70</th>
<th>0.75</th>
<th>0.80</th>
<th>0.85</th>
<th>0.90</th>
<th>0.95</th>
</tr>
</thead>
</table>
The best uniformity results from the azimuthal repointing design.
Some additional nonuniformity results from actual beam-energy variations

Azimuthal repointing and actual energy variations ($\sigma_{\text{rms}} = 2.2\%$)

Azimuthal repointing ($\sigma_{\text{rms}} = 1.6\%$)

Deposited energy (kJ/sr) vs. Azimuthal angle ϕ ($^\circ$)

$\theta = 60^\circ$
For shot N130128, the center-of-mass distribution was estimated from the deposited-energy distribution by applying a simple scaling law to the azimuthal variations.

- Center-of-mass radius
- 192 beams
- Actual energies

\[t_{\text{NIF}} = 5.8 \text{ ns} \quad \bar{r} = 579 \mu\text{m} \]

\[\text{Distance} \propto \text{intensity}^{0.72} \]
Framing-camera self-emission images from shot N130128 show features at ±30° from the equator in agreement with simulations.
Shot N130703 used azimuthal repointing but two quads were dropped.

- Deposited energy
 - low near the missing quads

Weak at $\phi = 135^\circ$

$t_{NIF} = 5.9 \text{ ns}$

Fraction of maximum

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Large variations are predicted in the center-of-mass radius

- Center-of-mass radius

$t_{\text{NIF}} = 5.9\ \text{ns}$
The azimuthal variations in the experimental self-emission show the missing quads and the weak drive at 135°.

\[t_{NIF} = 5.9 \text{ ns} \]

- SAGE center of mass
- Experimental self-emission (shifted 50 \(\mu \text{m} \))
- Missing quads

Azimuthal angle \(\phi \) (°)

Radius (\(\mu \text{m} \))
For shot N130731, the azimuthal variations are $\sim \pm 10 \, \mu m$ and show the predicted strong drive at $\phi = 135^\circ$.

![Diagram showing azimuthal variations and drive at 135°](chart.png)
The azimuthal uniformity of National Ignition Facility (NIF) polar-drive implosions can be calculated using a pseudo 3-D model in SAGE

- The uniformity is improved with azimuthal repointing of the laser beams
- Predictions of the model match many features of self-emission images for LLE polar-drive shots N130128, N130703, and N130731
- The self-emission diagnostic can detect predicted deviations of \(\sim 10 \, \mu m \) resulting from beam-energy imbalance

See A. K. Davis (UO4.00004, next talk) for detailed modeling of the x-ray images.