Optimization of Azimuthal Uniformity in NIF Polar-Drive Implosions

Summary

The azimuthal uniformity of National Ignition Facility (NIF) polar-drive implosions can be calculated using a pseudo 3-D model in SAGE

- The uniformity is improved with azimuthal repointing of the laser beams
- Predictions of the model match many features of selfemission images for LLE polar-drive shots N130128, N130703, and N130731
- The self-emission diagnostic can detect predicted deviations of ~10 μm resulting from beam-energy imbalance

See A. K. Davis (UO4.00004, next talk) for detailed modeling of the x-ray images.

P. B. Radha, A. K. Davis, D. H. Froula, M. Hohenberger, P. W. McKenty, D. T. Michel, P. A. Olson, and T. C. Sangster

> University of Rochester Laboratory for Laser Energetics

S. LePape, T. Ma, and A. J. Mackinnon

Lawrence Livermore National Laboratory

The alternating quad design results in a large m = 4 nonuniformity in the deposited energy

The split-quad design shows improved azimuthal deposition uniformity with an m = 8 pattern

More improvement is obtained through the addition of azimuthal repointing

The best uniformity results from the azimuthal repointing design

Runs 6216, 6291, 6292 TC10745

Some additional nonuniformity results from actual beam-energy variations

Runs 6292, 6301 TC10746

For shot N130128, the center-of-mass distribution was estimated from the deposited-energy distribution by applying a simple scaling law to the azimuthal variations

Framing-camera self-emission images from shot N130128 show features at $\pm 30^{\circ}$ from the equator in agreement with simulations

UR 🔌

Run 6324 TC10748

Shot N130703 used azimuthal repointing but two quads were dropped

UR

Run 6343 TC10749

Large variations are predicted in the center-of-mass radius

The azimuthal variations in the experimental self-emission show the missing quads and the weak drive at 135°

Run 6343 TC10751

For shot N130731, the azimuthal variations are $\sim \pm 10 \ \mu m$ and show the predicted strong drive at $\phi = 135^{\circ}$

LLE

Run 6349 TC10752a

Summary/Conclusions

The azimuthal uniformity of National Ignition Facility (NIF) polar-drive implosions can be calculated using a pseudo 3-D model in SAGE

- The uniformity is improved with azimuthal repointing of the laser beams
- Predictions of the model match many features of selfemission images for LLE polar-drive shots N130128, N130703, and N130731
- The self-emission diagnostic can detect predicted deviations of ~10 μm resulting from beam-energy imbalance

See A. K. Davis (UO4.00004, next talk) for detailed modeling of the x-ray images.

