Hydrodynamic Scaling of the Deceleration-Phase Rayleigh–Taylor Instability

A. Bose University of Rochester Laboratory for Laser Energetics

55th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 11–15 November 2013

FSC

The deceleration-phase Rayleigh–Taylor (RT) instability does not scale hydro-equivalently

- The nonscalability of the thermal transport in the hot-spot affects the deceleration-phase RT instability growth
- National Ignition Facility (NIF)-scale targets have lower mass ablation, resulting in higher RT growth factors and lower yield-over-clean (YOC)
- Simulations show that the YOC reduction with increasing target size caused by this effect is modest (~20% at implosion velocities of 430 km/s)

R. Betti,^{1,2} R. Nora,^{1,2} K. Woo,^{1,2} P.-Y. Chang,^{1,2} J. R. Davies,¹ A. Christopherson,^{1,2} J. A. Delettrez,¹ and K. S. Anderson¹

> University of Rochester Laboratory for Laser Energetics

¹also Fusion Science Center for Extreme States of Matter

²also Department of Physics and/or Mechanical Engineering

OMEGA implosions are scaled hydro-equivalently to estimate performance on direct-drive symmetric NIF

The generalized Lawson criterion scales as YOC $^{0.4}_{no \alpha}$ $\chi_{3-D} \sim E^{0.37} \text{ YOC}^{0.4}_{no \alpha}$

The deceleration-phase RT instability does not scale hydro-equivalently

• Ablation velocity scales with the target size as

$$V_a \sim \frac{\kappa_0 T^{5/2} *}{\rho_{\rm sh} R} \sim 1/\sqrt{R}$$

 Larger targets have shorter density scale lengths because of lower ablation

$$N_{e}^{\mathsf{RT}} = \alpha \sqrt{\frac{k\langle g \rangle t^{2}}{1 + k \langle L_{m} \rangle}} - \beta \langle V_{a} \rangle t$$

$$\boldsymbol{N}_{\mathsf{NIF}}^{\mathsf{RT}} > \boldsymbol{N}_{\Omega}^{\mathsf{RT}}$$

V. Lobatchev and R. Betti, Phys. Rev. Lett. 85, 4522 (2000).

^{*}R. Betti et al., Phys. Plasmas <u>9</u>, 5 (2002);

The deceleration-phase RT instability does not scale hydro-equivalently

• Ablation velocity scales with the target size as

$$V_a \sim \frac{\kappa_0 T^{5/2} *}{\rho_{\rm sh} R} \sim 1/\sqrt{R}$$

 Larger targets have shorter density scale lengths because of lower ablation

$$N_{e}^{\mathsf{RT}} = \alpha \sqrt{\frac{k \langle g \rangle t^{2}}{1 + k L_{m}}} - \beta V_{a} t$$

V. Lobatchev and R. Betti, Phys. Rev. Lett. 85, 4522 (2000).

^{*}R. Betti et al., Phys. Plasmas <u>9</u>, 5 (2002);

Simulations are performed using a 2-D decelerationphase hydrocode*,**

- The code imports 1-D LILAC[†] profiles at the end of the acceleration phase and simulates the deceleration phase in 2-D
- Features of the code
 - second order Eulerian, with moving grid
 - faster but with less physics than DRACO[‡]

Studies of the effects of thermal conduction are presented; radiation and alpha diffusion are not included.

V _i (km/s)	~430
Adiabat	~3.0

- [†] J. Delettrez et al. Phys. Rev. A <u>36</u>, 3926 (1987).
- [‡] P. B. Radha et al., Phys. Plasmas <u>12</u>, 032702 (2005).

TC11011

^{*} A. Bose et al., Bull. Am. Phys. Soc. <u>57</u>, 358 (2012).

^{**} K. Anderson, R. Betti, and T. A. Gardiner, Bull. Am. Phys. Soc. <u>46</u>, 280 (2001).

The ablation velocities and relative density-gradient scale lengths on OMEGA are greater than on the NIF

$$\mathbf{S} \equiv \left(\frac{\mathbf{R}_{\mathsf{NIF}}}{\mathbf{R}_{\Omega}} \right) \sim \mathbf{4}$$

Thermal transport in the hot spot makes the deceleration phase nonscalable

• Density at hydro-equivalent times showing ℓ = 60 growth

Classical deceleration-phase RT is exactly hydro-equivalent; thermal transport in the hot spot is nonscalable.

The deceleration-phase linear growth factors on the NIF are greater than on OMEGA for scaled initial perturbations FSE

Multimode simulations show that differences in the deceleration phase of hydro-equivalent implosions have a modest effect of the YOC ratio

*The effect of laser imprinting on the scaling of the YOC_{no α} is considered in R. Nora, Gl3.00002, this conference (invited).

Multimode simulations show that differences in the deceleration phase of hydro-equivalent implosions have a modest effect of the YOC ratio

*The effect of laser imprinting on the scaling of the YOC_{no α} is considered in R. Nora, Gl3.00002, this conference (invited).

TC10888a

The difference in deceleration RT growth factors are less important at lower implosion velocities*

 The effect of mass ablation on the deceleration phase **Rayleigh–Taylor** scales with the implosion velocity

*R. Nora, GI3.00002, this conference (invited).

Summary/Conclusions

FSC

The deceleration-phase Rayleigh–Taylor (RT) instability does not scale hydro-equivalently

- The nonscalability of the thermal transport in the hot-spot affects the deceleration-phase RT instability growth
- National Ignition Facility (NIF)-scale targets have lower mass ablation, resulting in higher RT growth factors and lower yield-over-clean (YOC)
- Simulations show that the YOC reduction with increasing target size caused by this effect is modest (~20% at implosion velocities of 430 km/s)

