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Summary
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The deceleration-phase Rayleigh–Taylor (RT) instability 
does not scale hydro-equivalently

•	 The nonscalability of the thermal transport in the hot-spot affects the 
deceleration-phase RT instability growth

•	 National Ignition Facility (NIF)-scale targets have lower mass ablation, 
resulting in higher RT growth factors and lower yield-over-clean (YOC)

•	 Simulations show that the YOC reduction with increasing target size 
caused by this effect is modest (~20% at implosion velocities  
of 430 km/s)
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OMEGA implosions are scaled hydro-equivalently to 
estimate performance on direct-drive symmetric NIF
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OMEGA 26 kJ Direct drive
NIF 1.8 MJ
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*C.D. Zhou and R.Betti, Phys. Plasma 14, 072703 (2007).

The generalized Lawson criterion scales as YOCno a 0.4
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The deceleration-phase RT instability does not scale 
hydro-equivalently
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	*	R. Betti et al., Phys. Plasmas 9, 5 (2002);
		 V. Lobatchev and R. Betti, Phys. Rev. Lett. 85, 4522 (2000).

•	 Ablation velocity scales  
with the target size as

•	 Larger targets have shorter 
density scale lengths because 
of lower ablation 
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The deceleration-phase RT instability does not scale 
hydro-equivalently

TC10882a

FSC

Hot spot

Rhs r

Ti t

S
h

el
l

Heat flux

Mass
ablation

	*	R. Betti et al., Phys. Plasmas 9, 5 (2002);
		 V. Lobatchev and R. Betti, Phys. Rev. Lett. 85, 4522 (2000).

•	 Ablation velocity scales  
with the target size as

•	 Larger targets have shorter 
density scale lengths because 
of lower ablation 
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•	 The code imports 1-D LILAC† profiles at the end of the acceleration 
phase and simulates the deceleration phase in 2-D

•	 Features of the code

–	 second order Eulerian, with moving grid

–	 faster but with less physics than DRACO‡

Simulations are performed using a 2-D deceleration- 
phase hydrocode*,**

TC11011

FSC

	 *	A. Bose et al., Bull. Am. Phys. Soc. 57, 358 (2012).
	**	K. Anderson, R. Betti, and T. A. Gardiner, Bull. Am. Phys. Soc. 46, 280 (2001).
	 †	J. Delettrez et al. Phys. Rev. A 36, 3926 (1987).   
	 ‡	P. B. Radha et al., Phys. Plasmas 12, 032702 (2005).

Studies of the effects of thermal conduction are presented; 
radiation and alpha diffusion are not included. 

Vi (km/s) ~430

Adiabat ~3.0



Ablation velocities Density-gradient scale lengths
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The ablation velocities and relative density-gradient 
scale lengths on OMEGA are greater than on the NIF
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With thermal conductiont(mg/cm3)
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Thermal transport in the hot spot makes  
the deceleration phase nonscalable 
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•	 Density at hydro-equivalent times showing , = 60 growth 

Classical deceleration-phase RT is exactly hydro-equivalent; 
thermal transport in the hot spot is nonscalable.
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The deceleration-phase linear growth factors on the NIF  
are greater than on OMEGA for scaled initial perturbations
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Time evolution of deceleration 
RT growth factor for mode , = 60 Deceleration RT growth factors
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Multimode simulations show that differences in the 
deceleration phase of hydro-equivalent implosions  
have a modest effect of the YOC ratio
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Considering this effect only, YOCX > YOCNIF
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•	 Hydro-equivalent ignition 
condition on OMEGA*
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*The effect of laser imprinting on the scaling of the YOCno a  
 is considered in R. Nora, GI3.00002, this conference (invited).



Multimode simulations show that differences in the 
deceleration phase of hydro-equivalent implosions  
have a modest effect of the YOC ratio
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Considering this effect only, YOCX > YOCNIF
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The difference in deceleration RT growth factors are less 
important at lower implosion velocities*
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•	 The effect of mass 
ablation on the 
deceleration phase 
Rayleigh–Taylor 
scales with the 
implosion velocity
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Summary/Conclusions

The deceleration-phase Rayleigh–Taylor (RT) instability 
does not scale hydro-equivalently

•	 The nonscalability of the thermal transport in the hot-spot affects the 
deceleration-phase RT instability growth

•	 National Ignition Facility (NIF)-scale targets have lower mass ablation, 
resulting in higher RT growth factors and lower yield-over-clean (YOC)

•	 Simulations show that the YOC reduction with increasing target size 
caused by this effect is modest (~20% at implosion velocities  
of 430 km/s)
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