Hydrodynamic Scaling of the Deceleration-Phase Rayleigh–Taylor Instability

\[FSC \left(n_m \right) t \left(mg/cm^3 \right) \]

\[\rho \]

\[YOC_{NIF} = 55\% \]
\[YOC_\Omega = 68\% \]

Time of peak neutron rate

55th Annual Meeting of the American Physical Society
Division of Plasma Physics
Denver, CO
11–15 November 2013
Summary

The deceleration-phase Rayleigh–Taylor (RT) instability does not scale hydro-equivalently

- The nonscalability of the thermal transport in the hot-spot affects the deceleration-phase RT instability growth
- National Ignition Facility (NIF)-scale targets have lower mass ablation, resulting in higher RT growth factors and lower yield-over-clean (YOC)
- Simulations show that the YOC reduction with increasing target size caused by this effect is modest (~20% at implosion velocities of 430 km/s)
Collaborators

R. Betti,¹,² R. Nora,¹,² K. Woo,¹,² P.-Y. Chang,¹,² J. R. Davies,¹
A. Christopherson,¹,² J. A. Delettrez,¹ and K. S. Anderson¹

University of Rochester
Laboratory for Laser Energetics

¹also Fusion Science Center for Extreme States of Matter

²also Department of Physics and/or Mechanical Engineering
OMEGA implosions are scaled hydro-equivalently to estimate performance on direct-drive symmetric NIF.

Hydrodynamic equivalence*

Same V_i, α, I_L

Hydrodynamic scaling

$R \sim \Delta \sim E_L^{1/3}$, $\text{Time} \sim E_L^{1/3}$

$\text{YOC} = \left(\frac{\text{Yield}_{3-D}}{\text{Yield}_{1-D}} \right)$

The generalized Lawson criterion scales as $\text{YOC}_{\text{no }}^{0.4}$

$\chi_{3-D} \sim E^{0.37} \text{YOC}_{\text{no }}^{0.4}$

The deceleration-phase RT instability does not scale hydro-equivalently

• Ablation velocity scales with the target size as
 \[V_a \sim \frac{k_0 T^{5/2}}{\rho_{sh} R} \sim 1/\sqrt{R} \]

• Larger targets have shorter density scale lengths because of lower ablation
 \[N_{eRT} = \alpha \sqrt{\frac{k \langle g \rangle t^2}{1 + k \langle L_m \rangle} - \beta \langle V_a \rangle t} \]

\[N_{RT \text{NIF}} > N_{RT \Omega} \]

*R. Betti et al., Phys. Plasmas 9, 5 (2002);
The deceleration-phase RT instability does not scale hydro-equivalently

- Ablation velocity scales with the target size as
 \[V_a \sim \frac{\kappa_0 T^{5/2}}{\rho_{sh} R} \sim 1/\sqrt{R} \]

- Larger targets have shorter density scale lengths because of lower ablation

\[N_e^{RT} = \alpha \sqrt{\frac{k \langle g \rangle t^2}{1 + k L_m} - \beta V_a t} \]

\[N_{RT}^{NIF} > N_{RT}^{\Omega} \]

Simulations are performed using a 2-D deceleration-phase hydrocode*,**

- The code imports 1-D LILAC† profiles at the end of the acceleration phase and simulates the deceleration phase in 2-D
- Features of the code
 - second order Eulerian, with moving grid
 - faster but with less physics than DRACO‡

Studies of the effects of thermal conduction are presented; radiation and alpha diffusion are not included.

<table>
<thead>
<tr>
<th>V_i (km/s)</th>
<th>~430</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adiabat</td>
<td>~3.0</td>
</tr>
</tbody>
</table>

The ablation velocities and relative density-gradient scale lengths on OMEGA are greater than on the NIF.

\[S \equiv \left(\frac{R_{\text{NIF}}}{R_{\Omega}} \right) \sim 4 \]
Thermal transport in the hot spot makes the deceleration phase nonscalable

- Density at hydro-equivalent times showing $\ell = 60$ growth

Classical deceleration-phase RT is exactly hydro-equivalent; thermal transport in the hot spot is nonscalable.
The deceleration-phase linear growth factors on the NIF are greater than on OMEGA for scaled initial perturbations.

\[S \equiv \left(\frac{R_{NIF}}{R_\Omega} \right) \]

Time evolution of deceleration RT growth factor for mode \(\ell = 60 \)

- **NIF**
- **\(\Omega \)**

Deceleration RT growth factors

- **NIF**
- **\(\Omega \)**

Growth factor

- \(50 \)
- \(20 \)
- \(10 \)
- \(5 \)
- \(2 \)
- \(1 \)

Time of peak neutron rate

- \(-0.4\)
- \(-0.3\)
- \(-0.2\)
- \(-0.1\)
- \(0.0\)

t\(_{NIF}\) or S \times t\(_\Omega\) (ns)

Mode number (\(\ell \))

- \(10\)
- \(30\)
- \(50\)
Multimode simulations show that differences in the deceleration phase of hydro-equivalent implosions have a modest effect of the YOC ratio.

- Hydro-equivalent ignition condition on OMEGA*

\[\chi_\Omega \approx 0.2 \left(\frac{\text{YOC}_\Omega}{\text{YOC}_\text{NIF}} \right)^{0.4} \]

\[\Delta V/V_{\text{imp}} \% = 0.015 \]

10 < \ell < 60 with \ell^{-2} spectrum

\[\text{Considering this effect only, YOC}_\Omega > \text{YOC}_\text{NIF} \]

*The effect of laser imprinting on the scaling of the \(YOC_{\text{NIF}, \alpha} \) is considered in R. Nora, GI3.00002, this conference (invited).
Multimode simulations show that differences in the deceleration phase of hydro-equivalent implosions have a modest effect of the YOC ratio.

- Hydro-equivalent ignition condition on OMEGA*

\[\chi_\Omega \approx 0.2 \left(\frac{\text{YOC}_\Omega}{\text{YOC}_{\text{NIF}}} \right)^{0.4} \approx 0.21 \]

\[\Delta V/V_{\text{imp}} \% = 0.015 \]

\[10 < \ell < 60 \text{ with } \ell^{-2} \text{ spectrum} \]

Considering this effect only, \(\text{YOC}_\Omega > \text{YOC}_{\text{NIF}} \)

*The effect of laser imprinting on the scaling of the \(\text{YOC}_{\text{NIF}} \) is considered in R. Nora, GI3.00002, this conference (invited).
The difference in deceleration RT growth factors are less important at lower implosion velocities*

<table>
<thead>
<tr>
<th>V_i (km/s)</th>
<th>~430</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adiabat</td>
<td>~3.0</td>
</tr>
</tbody>
</table>

- The effect of mass ablation on the deceleration phase Rayleigh–Taylor scales with the implosion velocity

\[
\frac{kV_a}{\sqrt{kg}} \sim V_{imp}
\]

*R. Nora, Gl3.00002, this conference (invited).
The deceleration-phase Rayleigh–Taylor (RT) instability does not scale hydro-equivalently

- The nonscalability of the thermal transport in the hot-spot affects the deceleration-phase RT instability growth
- National Ignition Facility (NIF)-scale targets have lower mass ablation, resulting in higher RT growth factors and lower yield-over-clean (YOC)
- Simulations show that the YOC reduction with increasing target size caused by this effect is modest (~20% at implosion velocities of 430 km/s)