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Summary

Inductively coupled coils provide strong magnetic 
fields for magnetized high-energy-density-physics 
(HEDP) experiments

•	 Tests	of	a	prototype	verified	the	coupling	model

•	 The	coupling	characteristics	were	measured	to	be	in	agreement	
with	the	coupling	model

•	 A	maximum	magnetic-field	strength	of	up	to	60	T	at	the	center 
of a 1-mm coil is predicted
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MIFEDS provides an experimental platform 
for magnetized HEDP

•	 Magneto-inertial	fusion	electrical	discharge	system	(MIFEDS)

– generates tens of kiloamps

MIFEDS is continually being modified to increase the magnetic-field 
strength and to provide more possibilities for magnetized HEDP.
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Inductively coupled coils increase the current in the coil, 
which	increases	the	field	strength

•	 MIFEDS	is	current	limited	by	its	internal	impedance

•	 An	inductively	coupled	coil	will	produce	a	higher	current	in	a	small	
volume,	which	produces	a	higher	field

MIFEDS
(current limited)

MIFEDS
(current limited)

35 kA 140 kA

35 kA 1 mm

1 mm

B = 88 T*

B = 22 T

×4
current

amplification
*Example values neglecting losses
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A	prototype	transformer	coil	was	designed 
to test the coupling model

•	 A	multiturn	coil	is	clamped	between	a	figure-eight	structure 
that serves as a coupling and a magnetic-field coil

–	 calculated	values	used	a	skin-depth	model	of	a	current	pathway

Driven nine-turn
multilayered coil

B-field coil
Lc = 17.7 nH

Current path R2 = 6 mW
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An	equivalent	circuit	was	used	to	model 
inductive coupling 

•	 A	simple	transformer	setup 
was	modeled	with	circuit	
simulation	software

•	 The	current	amplification	
predicted by the simulation 
with	ideal	coupling	is	3.7

•	 Layered	turns	result	in	flux	leakage

•	 Results	in	a	coupling	factor	of	k = 80%

•	 Simulations	predict	a	current	amplification	
of	2.4	with	this	estimated	coupling	
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A	current	amplification	of	2.4	was	measured 
in	agreement	with	simulations

Inductively	coupled	coils	are	well	understood 
and can be easily designed.

Parameter Prediction Measured

L1 1 mH 1 mH

L2 17.7	nH 21 nH

Lc 17.7	nH 21 nH

R2 6 mX 6 mX

Coupling 80% 79%
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Magnetic fields of up to 60 T can be obtained 
with	improved	inductive	coupling

The magnetic field can be increased by more than a factor of 3 
with	sufficient	coupling.
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Summary/Conclusions

Inductively coupled coils provide strong magnetic 
fields for magnetized high-energy-density-physics 
(HEDP) experiments

•	 Tests	of	a	prototype	verified	the	coupling	model

•	 The	coupling	characteristics	were	measured	to	be	in	agreement	
with	the	coupling	model

•	 A	maximum	magnetic-field	strength	of	up	to	60	T	at	the	center 
of a 1-mm coil is predicted



Inductance and resistance calculations of a transformer 
coil prototype
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•	 The	same	formula	can	also 
be used for the primary coil

*F. W. Grover, Inductance Calculations: Working Formulas and Tables 
(D.	Van	Nostrand,	New	York,	1946), pp. 94–113 and 144.
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Why doesn’t the MIFEDS trace in your simulation match 
the experiment?

•	 MIFEDS	may	have	a	time-dependent	resistance	caused	by	a	spark	gap	
current	switch,	or	a	frequency-dependent	capacitance	caused	by	the	
inner dielectric (demonstrated by varying L and R in the model)

Correct periodicity; incorrect amplitude Correct amplitude; incorrect periodicity



Numerical equations
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VisRad model of transformer coil prototype

Whole
assembly

Primary coil Secondary coil
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Methods of increasing magnetic field delivered 
by MIFEDS

•	 Decrease	coil	size

Pros Cons

Easy to design 
and make

Limited	by	wire	size;	
possible blocked 

beams

Does not change 
coil	design;	works	
for all applications

High voltages inside 
MIFEDS cause many 

issues; limited 
storage

Easy to design and 
make; not limited by 

wire	size

Coil too bulky and 
blocks laser beams; 

large inductance

Does not change 
coil	design;	works	
for all applications

Very hard to 
accomplish; requires 

redesign of all 
MIFEDS circuitry

•	 Increase	stored	energy	in	MIFEDS

•	 Increase	number	of	turns	in	the	coil

•	 Decrease	internal	impedance 
of MIFEDS

•	 We	need	a	high	current	in	a	small	volume;	this	can	be	accomplished	by	using	
a	small	coil	with	low	inductance


