Increasing the Magnetic-Field Capability of MIFEDS Using an Inductively Coupled Coil

D. H. Barnak University of Rochester Laboratory for Laser Energetics and Fusion Science Center 55th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 11–15 November 2013

LLE

Summary

Inductively coupled coils provide strong magnetic fields for magnetized high-energy-density-physics (HEDP) experiments

- Tests of a prototype verified the coupling model
- The coupling characteristics were measured to be in agreement with the coupling model

UR

• A maximum magnetic-field strength of up to 60 T at the center of a 1-mm coil is predicted

P.-Y. Chang*, G. Fiksel, R. Betti*, and C. Taylor

University of Rochester Laboratory for Laser Energetics *also with Fusion Science Center for Extreme States of Matter

MIFEDS provides an experimental platform for magnetized HEDP

• Magneto-inertial fusion electrical discharge system (MIFEDS)

UR

- generates tens of kiloamps

MIFEDS is continually being modified to increase the magnetic-field strength and to provide more possibilities for magnetized HEDP.

Inductively coupled coils increase the current in the coil, which increases the field strength

• MIFEDS is current limited by its internal impedance

• An inductively coupled coil will produce a higher current in a small volume, which produces a higher field

A prototype transformer coil was designed to test the coupling model

- A multiturn coil is clamped between a figure-eight structure that serves as a coupling and a magnetic-field coil
 - calculated values used a skin-depth model of a current pathway

An equivalent circuit was used to model inductive coupling

- A simple transformer setup was modeled with circuit simulation software
- The current amplification predicted by the simulation with ideal coupling is 3.7

- Layered turns result in flux leakage
- Results in a coupling factor of *k* = 80%
- Simulations predict a current amplification of 2.4 with this estimated coupling

UR

A current amplification of 2.4 was measured in agreement with simulations

Parameter	Prediction	Measured
<i>L</i> ₁	1 mH	1 mH
L ₂	17.7 nH	21 nH
L _c	17.7 nH	21 nH
R ₂	$6 \text{ m}\Omega$	6 m Ω
Coupling	80%	79%

Inductively coupled coils are well understood and can be easily designed.

Magnetic fields of up to 60 T can be obtained with improved inductive coupling

The magnetic field can be increased by more than a factor of 3 with sufficient coupling.

Summary/Conclusions

Inductively coupled coils provide strong magnetic fields for magnetized high-energy-density-physics (HEDP) experiments

- Tests of a prototype verified the coupling model
- The coupling characteristics were measured to be in agreement with the coupling model

UR

• A maximum magnetic-field strength of up to 60 T at the center of a 1-mm coil is predicted

Inductance and resistance calculations of a transformer coil prototype

(D. Van Nostrand, New York, 1946), pp. 94–113 and 144.

Why doesn't the MIFEDS trace in your simulation match the experiment?

 MIFEDS may have a time-dependent resistance caused by a spark gap current switch, or a frequency-dependent capacitance caused by the inner dielectric (demonstrated by varying *L* and *R* in the model)

TC10968

Numerical equations

TC10970

VisRad model of transformer coil prototype

Methods of increasing magnetic field delivered by MIFEDS

	Pros	Cons
Decrease coil size	Easy to design and make	Limited by wire size; possible blocked beams
 Increase stored energy in MIFEDS 	Does not change coil design; works for all applications	High voltages inside MIFEDS cause many issues; limited storage
 Increase number of turns in the coil 	Easy to design and make; not limited by wire size	Coil too bulky and blocks laser beams; large inductance
 Decrease internal impedance of MIFEDS 	Does not change coil design; works for all applications	Very hard to accomplish; requires redesign of all MIFEDS circuitry

UR

• We need a high current in a small volume; this can be accomplished by using a small coil with low inductance

