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Summary

Inductively coupled coils provide strong magnetic 
fields for magnetized high-energy-density-physics 
(HEDP) experiments

•	 Tests of a prototype verified the coupling model

•	 The coupling characteristics were measured to be in agreement 
with the coupling model

•	 A maximum magnetic-field strength of up to 60 T at the center 
of a 1-mm coil is predicted
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MIFEDS provides an experimental platform 
for magnetized HEDP

•	 Magneto-inertial fusion electrical discharge system (MIFEDS)

–	 generates tens of kiloamps

MIFEDS is continually being modified to increase the magnetic-field 
strength and to provide more possibilities for magnetized HEDP.
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Inductively coupled coils increase the current in the coil, 
which increases the field strength

•	 MIFEDS is current limited by its internal impedance

•	 An inductively coupled coil will produce a higher current in a small 
volume, which produces a higher field

MIFEDS
(current limited)

MIFEDS
(current limited)

35 kA 140 kA

35 kA 1 mm

1 mm

B = 88 T*

B = 22 T

×4
current

amplification
*Example values neglecting losses
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A prototype transformer coil was designed 
to test the coupling model

•	 A multiturn coil is clamped between a figure-eight structure 
that serves as a coupling and a magnetic-field coil

–	 calculated values used a skin-depth model of a current pathway

Driven nine-turn
multilayered coil

B-field coil
Lc = 17.7 nH

Current path R2 = 6 mW
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An equivalent circuit was used to model 
inductive coupling 

•	 A simple transformer setup 
was modeled with circuit 
simulation software

•	 The current amplification 
predicted by the simulation 
with ideal coupling is 3.7

•	 Layered turns result in flux leakage

•	 Results in a coupling factor of k = 80%

•	 Simulations predict a current amplification 
of 2.4 with this estimated coupling 
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A current amplification of 2.4 was measured 
in agreement with simulations

Inductively coupled coils are well understood 
and can be easily designed.

Parameter Prediction Measured

L1 1 mH 1 mH

L2 17.7 nH 21 nH

Lc 17.7 nH 21 nH

R2 6 mX 6 mX

Coupling 80% 79%
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Magnetic fields of up to 60 T can be obtained 
with improved inductive coupling

The magnetic field can be increased by more than a factor of 3 
with sufficient coupling.
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Summary/Conclusions

Inductively coupled coils provide strong magnetic 
fields for magnetized high-energy-density-physics 
(HEDP) experiments

•	 Tests of a prototype verified the coupling model

•	 The coupling characteristics were measured to be in agreement 
with the coupling model

•	 A maximum magnetic-field strength of up to 60 T at the center 
of a 1-mm coil is predicted



Inductance and resistance calculations of a transformer 
coil prototype

TC10968

•	 The same formula can also 
be used for the primary coil

*F. W. Grover, Inductance Calculations: Working Formulas and Tables 
(D. Van Nostrand, New York, 1946), pp. 94–113 and 144.
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Why doesn’t the MIFEDS trace in your simulation match 
the experiment?

•	 MIFEDS may have a time-dependent resistance caused by a spark gap 
current switch, or a frequency-dependent capacitance caused by the 
inner dielectric (demonstrated by varying L and R in the model)

Correct periodicity; incorrect amplitude Correct amplitude; incorrect periodicity



Numerical equations
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VisRad model of transformer coil prototype

Whole
assembly

Primary coil Secondary coil
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Methods of increasing magnetic field delivered 
by MIFEDS

•	 Decrease coil size

Pros Cons

Easy to design 
and make

Limited by wire size; 
possible blocked 

beams

Does not change 
coil design; works 
for all applications

High voltages inside 
MIFEDS cause many 

issues; limited 
storage

Easy to design and 
make; not limited by 

wire size

Coil too bulky and 
blocks laser beams; 

large inductance

Does not change 
coil design; works 
for all applications

Very hard to 
accomplish; requires 

redesign of all 
MIFEDS circuitry

•	 Increase stored energy in MIFEDS

•	 Increase number of turns in the coil

•	 Decrease internal impedance 
of MIFEDS

•	 We need a high current in a small volume; this can be accomplished by using 
a small coil with low inductance


