Soft X-Ray Backlighting of Direct-Drive Implosions Using a Narrowband Crystal Imaging System

C. Stoeckl
University of Rochester
Laboratory for Laser Energetics

54th Annual Meeting of the American Physical Society
Division of Plasma Physics
Providence, RI
29 October–2 November 2012
A spherical crystal imager (SCI) will be used to backlight cryogenic DT implosions on OMEGA

- An SCI system is well suited for cryo backlighting because of its narrow spectral width, high throughput, and potential for high spatial resolution
- The backlighter is driven by an OMEGA EP short-pulse beam to provide high brightness and a high time resolution
- The first experiments with room-temperature CH targets showed encouraging images with an astigmatism-limited resolution of ~20 µm
- Two major improvements are planned for the Si-SCI on OMEGA
 - an aspheric crystal will be used to reduce the astigmatism
 - a fast target insertion system will make the SCI compatible with cryogenic operation
Collaborators

University of Rochester
Laboratory for Laser Energetics
A high backlighter spectral brightness at 2 keV is required to image the compressed core of cryogenic targets.

- Simulations predict a self-emission of 8 μJ/eV/ps/Sr in the 2-keV range.
- The simulation assumes, for the backlighter, a 3-keV Planckian spectrum filtered in the 2- to 2.2-keV spectral range (~ 60 μJ/eV/ps/Sr).
Backlighting the compressed core of a cryogenic target implosion is challenging

- The low opacity of DT requires a soft x-ray backlighter
 - the spherical crystal imager uses the Si-He$_\alpha$ line at 1865 eV
- A bright backlighter is required to overcome the self emission
 - the high energy (\sim1500 J at 10 ps) of OMEGA EP makes it possible to illuminate a large target area at intensities of $\sim 10^{18}$ W/cm2
- The cryo implosion evolves at high speed
 - the short-pulse duration of OMEGA EP provides a time resolution of the order of 10 ps
- The small size of the core requires a high resolution ($<10 \mu$m)
 - a crystal on an aspheric substrate has a calculated resolution of close to 1 μm
High-quality backlit images of implosions can be obtained with a crystal imaging system

- The backlighter foil is not in the focus of the imaging system, so the backlighter uniformity does not depend on the laser-intensity distribution

- A collimator blocks the line of sight (LOS) to the backlighter, minimizing the background from the short-pulse laser

- A direct LOS block shields the detector from background produced by the implosion target
The OMEGA spherical crystal imager* is based on the OMEGA EP** design

- The crystal is located in TIM-6, 267 mm from the target
- The detector in TIM-4 is placed 3.6 m from the crystal for a magnification of ~15

First tests of the Si He\textsubscript{\alpha} SCI system were performed with room-temperature, gas-filled CH target implosions.

- Plastic is completely opaque to Si He\textsubscript{\alpha} near peak compression.
Reasonable agreement is achieved between the experimental image and Spect3D

• Higher-order reflections must be included in Spect3D simulations to reproduce experimental images

An aspheric crystal substrate has been designed to reduce the aberrations of the crystal imager.

- The design of the aspheric substrate uses five aspheric terms to reduce the astigmatism, coma, and fourth-order horizontal aberrations.
A fast target inserter (FASTPOS) is available to insert the backlighter target once the cryo shroud is removed.

- The backlighter target must be positioned <10 mm from the cryo target, which is inside the shroud envelope.
- FASTPOS has demonstrated the required:
 - speed (<100-ms insertion)
 - accuracy (<50 μm)
 - electromagnetic interference resilience
A spherical crystal imager (SCI) will be used to backlight cryogenic DT implosions on OMEGA

- An SCI system is well suited for cryo backlighting because of its narrow spectral width, high throughput, and potential for high spatial resolution
- The backlighter is driven by an OMEGA EP short-pulse beam to provide high brightness and a high time resolution
- The first experiments with room-temperature CH targets showed encouraging images with an astigmatism-limited resolution of ~20 μm
- Two major improvements are planned for the Si-SCI on OMEGA
 - an aspheric crystal will be used to reduce the astigmatism
 - a fast target insertion system will make the SCI compatible with cryogenic operation