Hot-Spot Mix and Compressed Ablator ρR Measurements in Ignition-Scale Implosions

Ch. 3: 7.2 to 12.7 keV

1-D spectral image

100 μm

Phonon energy

Space

Ge K_α, Cu K_α, Ge He_α + satellite

Tri-doped CH ablator (N120219)

S. P. Regan
University of Rochester
Laboratory for Laser Energetics

54th Annual Meeting of the American Physical Society
Division of Plasma Physics
Providence, RI
29 October–2 November 2012
Summary

Hot-spot mix and compressed ablator ρR are diagnosed with x-ray spectroscopy

- Cu and Ge dopants placed at different radial locations in the plastic ablator are used to study the origin of hot-spot mix\(^1\) via He\(_{\alpha}\) + satellite emission spectroscopy\(^2\)
- Low neutron yields and hot-spot mix mass around the 75 ng limit\(^3\) are observed
- A compressed ablator ρR of 0.35 to 0.5 g/cm\(^2\) is inferred from Cu and Ge K-edge absorption

Shell material near the ablation surface comprises most of the hot-spot mix mass.

\(^1\)B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010).
\(^3\)S. W. Haan et al., Phys Plasmas 18, 051001 (2011).
Collaborators

R. Epstein
University of Rochester
Laboratory for Laser Energetics

Lawrence Livermore National Laboratory

I. E. Golovkin J. J. MacFarlane
Prism Computational Sciences

R. C. Mancini
University of Nevada, Reno
Cu and Ge dopants are placed at different radial locations in the plastic ablator to study the origin of hot-spot mix.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Dopant (atm. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Cu (0.14%)</td>
</tr>
<tr>
<td>2</td>
<td>Ge (0.20%) Si (0.87%)</td>
</tr>
<tr>
<td>3</td>
<td>Ge (0.20%) Si (1.64%)</td>
</tr>
<tr>
<td>Outer</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Si (1.15%)</td>
</tr>
<tr>
<td>5</td>
<td>None</td>
</tr>
</tbody>
</table>

The x-ray ablation front reaches the Ge-doped layer, but not the Cu-doped layer.
The measured spectrum has features from the shell (Cu, Ge K edge; Cu, Ge Kα) and the hot spot (Ge Heα + satellite emission)*

- The compressed ablator ρR is inferred from the K-edge absorption and the hot-spot mix mass is inferred from Cu, Ge Heα + satellite emission
- Cu, Ge Kα emission is from a compressed ablator photopumped by x-ray continuum from the hot spot

*Regan et al., Phys. Plasmas 19 056307 (2012); R. Epstein, PO4.00008, this conference
Shell material near the ablation surface—CH(Ge)—comprises most of the hot-spot mix mass.

A 15-ng upper limit of mix mass from the inner ablator is estimated from the Cu He$_\alpha$ + satellite emission.
Low neutron yields and hot-spot mix mass around the 75-ng limit are observed

The NIF requirement (driven by radiative cooling) is that CH(Ge) hot-spot mix mass < 75 ng*

- Hot-spot mix-mass analysis assumes 125-ps x-ray burnwidth

The ablator ρR is estimated from Cu, Ge K edges for the tri-doped ablator.

Cold opacities of Cu and Ge are used for estimate (i.e., for Cu the shell transmission is proportional to $\exp[-\rho R(Cu) \mu_{\text{cold Cu}}]$).
\(\rho R \) of compressed tri-doped ablator is 0.35 to 0.5 g/cm\(^2\) for N120219 (C:H = 1:1.35)

- \(\rho R(\text{Cu}) \) and \(\rho R(\text{Ge}) \) are inferred from the measured drop of intensity at the K-edge
- Atomic fractions of elements in the ablator measured at General Atomics are used to infer \(\rho R(\text{CH}) \) and \(\rho R(\text{Si}) \)
- \(\rho R(\text{CH, Cu}) = 0.035 \) to 0.139 g/cm\(^2\)
- \(\rho R(\text{CH, Ge, Si}) = 0.306 \) to 0.374 g/cm\(^2\)
- Total ablator \(\rho R = 0.35 \) to 0.5 g/cm\(^2\)
- Simulated ablator \(\rho R = 0.68 \) g/cm\(^2\) is comparable to experimental result
Summary/Conclusions

Hot-spot mix and compressed ablator ρR are diagnosed with x-ray spectroscopy

- Cu and Ge dopants placed at different radial locations in the plastic ablator are used to study the origin of hot-spot mix via $\text{He}_\alpha +$ satellite emission spectroscopy.
- Low neutron yields and hot-spot mix mass around the 75 ng limit are observed.
- A compressed ablator ρR of 0.35 to 0.5 g/cm2 is inferred from Cu and Ge K-edge absorption.

Shell material near the ablation surface comprises most of the hot-spot mix mass.

1B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010).
The x-ray continuum is fitted with a model including the hot-spot x-ray emission and the compressed-shell attenuation

- X-ray continuum from hot spot transmitted through the shell
 \[I(\nu) = I_0(\nu) \exp[-\tau] \]

- Hot-spot x-ray continuum emission
 \[I_0(\nu) = I_c \exp[-h\nu/kT] \]

- Optical thickness of the compressed shell
 \[\tau(h\nu < \text{Cu K edge}) = M_1/(h\nu)^3 \]
 \[\tau(\text{Cu K edge} < h\nu < \text{Ge K edge}) = (M_1 + M_2)/(h\nu)^3 \]
 \[\tau(h\nu > \text{Ge K edge}) = (M_1 + M_2 + M_3)/(h\nu)^3 \]
Hot-spot mix and compressed ablator ρR are diagnosed with x-ray spectroscopy around peak compression.

High-Z–doped ablator material emits K-shell emission when mixed into the hot spot.

X-ray continuum from the hot spot is attenuated by the K edge of a high-Z dopant in the compressed ablator.