Streaked X-Ray Imaging of Ultrafast Ionization Waves Inside a Metal

P. M. Nilson University of Rochester Laboratory for Laser Energetics 54th Annual Meeting of the American Physical Society Division of Plasma Physics Providence, RI 29 October–2 November 2012 Summary

Hot-electron-driven ionization waves were observed inside a high-intensity laser-irradiated metal target

- A new, monochromatic, streaked x-ray crystal imager has been developed for the OMEGA EP laser to study collisional ionization wave dynamics
- Spatial, spectral, and temporal resolution are obtained by coupling a spherically bent crystal imager with a 2-ps-resolution x-ray streak camera
- The flow of hot-electron–induced K_{α} emission has been tracked through a metal target

Ionization-wave speed: (0.11±0.02)c

G. Fiksel¹, C. Stoeckl¹, P. A. Jannimagi¹, C. Mileham¹, W. Theobald¹, J. R. Davies^{1,2}, J. F. Myatt¹, A. A. Solodov^{1,2}, D. H. Froula¹, R. Betti^{1,2,3}, and D. D. Meyerhofer^{1,2,3}

> ¹Laboratory for Laser Energetics University of Rochester, Rochester, NY

²Fusion Science Center for Extreme States of Matter University of Rochester, Rochester, NY

³Departments of Mechanical Engineering and Physics University of Rochester, Rochester, NY

Isochoric heating provides a unique route to warm dense matter (WDM) and HED plasma conditions

• WDM systems start as a solid and end as plasma

FSC

- Found in stellar interiors, cores of large planets, and ICF implosions
- Significant uncertainties exist in WDM equation of state
- Measurements are required for model development

WDM creation relies on generating intense flows of energy inside solid- and laser-compressed matter.

UR 火

LLE

Report of the SAUUL Workshop, Washington, DC (17-19 June 2002).

Hot-electron refluxing in mass-limited targets accesses high-temperature matter at solid density

UR 🔌

LLE

- W. Theobald et al., Phys. Plasmas 13, 043102 (2006);
- J. Myatt et al., Phys. Plasmas 14, 055301 (2007);
- P. M. Nilson et al., Phys. Rev, E 79, 016406 (2009).

^{*}S. P. Hatchett et al., Phys. Plasmas 7, 2076 (2000);

R. A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000);

Spatial, spectral, and temporal resolution are obtained by coupling a spherical crystal imager with an ultrafast x-ray streak camera

S. A. Pikuz et al., Rev. Sci. Instrum. <u>68</u>, 740 (1997).

- Y. Aglitskiy et al., Phys. Rev. Lett. 87, 265001 (2001).
- R. B. Stephens et al., Phys. Rev. E <u>69</u>, 066414 (2004).

J. A. Koch et al., Rev. Sci. Instrum. 74, 2130 (2003).

Streaked K_{α} imaging shows a collisional ionization wave and ultrafast energy transport into the target FSC

Laser: 250 J, 10 ps Target: 500 imes 500 imes 20- μ m³ Cu Signal (ADU) 1500 Target edge **0.8** 200 Signal 1000 0.4 0 500 0.0 20 40 60 0 -200Time (ps) The FWHM of the impulse-response Ω 40 20 0

function is subtracted from the streak-camera trace in quadrature

LLE

 K_{α} flash time (FWHM): (12.0±0.1) ps

Distance (µm)

Time (ps)

The ionization wave is observed to move with a speed of 0.11±0.02 c

- Data from several adjacent time steps are grouped together into a single bin to estimate statistical errors
- The error bars report the standard deviation for each bin
- Suggests the ionization-wave speed increases with time

The ionization wave is driven by a time-dependent hot-electron source with an intensity-dependent hot-electron temperature FSC

- LSP* calculates hot-electron flow
 - 250-J, 10-ps pulse
- Hot-electron source is prescribed with varying energy
- Full target volume and interaction time scale are modeled
- LSP calculates electromagnetic fields self-consistently— accounts for refluxing

*D. Welch *et al.*, Nucl. Inst. Methods Res. A <u>464</u>, 134 (2001). **Prism Computational Sciences, Inc., Madison, WI 53711

Summary/Conclusions

Hot-electron-driven ionization waves were observed inside a high-intensity laser-irradiated metal target

- A new, monochromatic, streaked x-ray crystal imager has been developed for the OMEGA EP laser to study collisional ionization wave dynamics
- Spatial, spectral, and temporal resolution are obtained by coupling a spherically bent crystal imager with a 2-ps-resolution x-ray streak camera
- The flow of hot-electron–induced K_{α} emission has been tracked through a metal target

Ionization-wave speed: (0.11±0.02)c

The crystal was initially aligned with a single-mode fiber laser*

• X-ray imaging on low-power shots optimized alignment

based on x-ray imaging optimization.

A 2-ps-resolution x-ray streak camera was coupled to the crystal imager

P. M. Nilson et al., Phys. Rev. Lett. <u>108</u>, 085002 (2012).