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Experimental Validation of the Two-Plasmon–Decay 
Common-Wave Process
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A common-wave gain model allows for the two-plasmon–
decay (TPD) threshold to be predicted for many different 
experimental configurations
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Summary

•	 A	resonant	common	electron	plasma	wave	(EPW) is driven by multiple 
laser beams in the region bisecting the beams’ wave vectors

•	 Different	intensity	thresholds	are	observed	for	various	laser-beam	
geometries in planar and spherical configurations

•	 The	resonant	convective	common-wave	gain	is	consistent	with	 
the experimental observables*

•	 Several	theoretical	models	are	being	developed	to	understand	TPD	 
in the direct-drive–ignition regime

The laser-beam geometry must be taken 
into account to calculate the TPD gain.

*D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).
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Hot electrons can preheat the shell and reduce 
the compression efficiency
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Hydrodynamic simulations indicate that low-adiabat 
ignition designs can sustain ~0.1% preheat.*

*LLE Review Quarterly Report 79, 130, Laboratory for Laser Energetics, University of Rochester, 
Rochester, NY, LLE Document No. DOE/SF/19460-317, NTIS Order No. DE2002762802 (1999).



Hot electrons can be generated by the TPD instability
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Hot electrons are 
accelerated by the 
enhanced electron 
plasma waves (EPW’s)*

 *N. A. Ebrahim et al., Phys. Rev. Lett. 45, 1179 (1980).
**J. F. Myatt et al., Phys. Plasmas 19, 022707 (2012).

The TPD instability
develops at nc/4
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TPD is investigated through experimental measurements 
of the hot-electron energy
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To guide target design, the convective gain is 
used as a criteria for hot-electron production.
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Hot-electron production was shown to depend 
on the overlapped intensity*
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These experiments suggested that TPD is driven 
by multiple laser beams.

*C. Stoeckl et al., Phys. Rev. Lett. 90, 235002 (2003).
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Linear theory shows that a resonant EPW is shared by 
multiple beams in the region bisecting the wave vectors 
of the beams

The resonant common-wave region 
for two beams forms a plane.

•	 The	dispersion	relation	of	each	
daughter beam (k0,i – kc) must 
be satisfied:

•	 Therefore,	the	common-	
wave volume is defined by:

Z Z vk k3 ,,0 pe th eic c
2 2 2 2

0~ ~ ~= +^ ^h h
Term must

be conserved

constantZk k,i c0 =

k0,2

kc

k0,1 – kc

k0,2 – kc

k0,1

*D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).



The resonant common-wave region for three or more 
beams forms a line
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Resonant multibeam coupling requires each beam 
to have the same angle to the common-wave vector.
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The resonant common-wave gain is calculated 
in the common-wave region*
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*M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972).



To study the multibeam TPD thresholds, three target 
configurations were used
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Each configuration varies a different parameter in the gain , , /f N L Tsym
n eg R_ i.
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OMEGA EP provides a planar-target platform to study 
multibeam TPD near ignition coronal-plasma conditions

This target platform accounts for all electrons generated by TPD; 
the energy coupled to the direct-drive shell will be reduced.*

Monte Carlo simulations 
determine Ee from Ka and Thot
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*D. H. Froula, TO5.00002, this conference.



These experiments show that the hot-electron production 
can have different dependences on the overlapped intensity
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A significant increase in the TPD threshold is observed when 
four beams are used with the same overlapped intensity.
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For the four-beam configuration, the TPD threshold 
is reduced by the geometric factor
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For the 18-beam configuration, a further decrease of hot-
electron production with overlapped intensity is measured
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In the 18-beam planar experiment, a factor-of- 
~3 increase is observed in the TPD threshold.



The beams in each cone drive independent common EPW’s

E21307a

•	 Each	common	wave	requires:

•	 This	is	not	satisfied	between	different	cones	on	OMEGA:

– constantk k,i c0 =

kc1

k0,i

k0,i – kc kc2

k0,i

k0,i – kc kc3

k0,i

k0,i – kc

Cone 1: Cone 2: Cone 3:

The gain is proportional to the overlapped intensity that 
contributes (i.e., Cone 1) to the maximum common-wave gain.

.I I0 3,q ovr
sym =
R

.I I0 15,q ovr
sym =
R

.I I0 05,q ovr
sym =
R



For the 18-beam configuration, the TPD threshold is 
reduced by limiting the number of symmetric beams
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Hot electrons were measured in spherical 
geometry by varying the laser energy
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In the 60-beam spherical experiments a factor-of- 
~3 increase is observed in the TPD threshold.
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The TPD model is extended to 3-D to calculate 
the gain in spherical geometry
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•	 Each	beam	is	propagated	
through the plasma

•	 The	plasma	parameters	are	
determined by hydrodynamic 
simulation (LILAC)

The gain is dominated by six-beam interaction.

/cmWI 10ovr
15 2=



The 3-D model reproduces the measured threshold

E21561

10–6

10–4

10–5

10–3

10–2

10–1

2 4

Common-wave gain (Gc)

f h
o

t

60 8

Four-beam planar
60-beam spherical

I
G f N T

L
47 e

n
c g

sym 14
SB

=
R_ fi p

Nbeam fg Nsym
R

Ln/Te

4 0.5 4 175
60 0.5 6 50



For several configurations, the resonant convective 
common-wave gain is consistent with the measured 
TPD threshold
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The common-wave gain can be used as a TPD 
criteria in polar-drive–ignition target designs.
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Although the convective gain is a reasonable guide, 
there are many limitations
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•	 Hot-electron	production	is	assumed	to	grow	linearly	with 
the electron plasma wave amplitude

•	 An	experimental	convective	gain	threshold	of	~2 is observed 
(enhanced thermal noise, laser speckles....?)

•	 Saturation	of	the	hot-electron	production	is	not	modeled



Several theoretical models are being used to further 
understand these experiments
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•	 Calculations	of	multibeam	absolute	thresholds	(enhanced thermal noise)

•	 Particle-in-cell	(OSIRIS,* RPIC**) simulations provide insight into the 
mechanisms for hot-electron production and saturation

•	 An	extended	Zakharov	model	provides	a	practical	middle	ground

– ZAK3D contains linear instability of multibeams in three dimensions***

– incorporates the important nonlinearities that lead to saturation

– a quasilinear Zakharov (QZAK) model computes hot-electron 
production

These models will provide a complete physics understanding 
of TPD that will lead to mitigation strategies (if necessary).

*R. Yan et al., Phys. Rev. Lett. 108, 175002 (2012).
**H. X. Vu et al., Phys. Plasmas 19, 102703 (2012).

***J. Zhang, TO5.00004, this conference.



Summary/Conclusions

E21556 *D. T. Michel et al., Phys. Rev. Lett. 109, 155007 (2012).

A common-wave gain model allows for the two-plasmon–
decay (TPD) threshold to be predicted for many different 
experimental configurations

•	 A	resonant	common	electron	plasma	wave	(EPW) is driven by multiple 
laser beams in the region bisecting the beams’ wave vectors

•	 Different	intensity	thresholds	are	observed	for	various	laser-beam	
geometries in planar and spherical configurations

•	 The	resonant	convective	common-wave	gain	is	consistent	with	 
the experimental observables*

•	 Several	theoretical	models	are	being	developed	to	understand	TPD	 
in the direct-drive–ignition regime

The laser-beam geometry must be taken 
into account to calculate the TPD gain.



In polar-drive experiments, Ring 1 is likely to dominate
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A quasilinear Zakharov model has been developed that 
also computes hot-electron production
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•	 It	computes	the	evolution	
(heating) of the electron 
distribution function  
(currently in 2-D)

•	 Quasilinear	(kinetic) saturation 
in addition to low-frequency 
density perturbations

•	 It	has	been	used	to	
demonstrate the ablator 
material independence of the 
two-plasmon–decay instability*
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 *J. F. Myatt, TO5.00005, this conference.


