The Release of Shocked CH

Summary

The release of a shocked material depends on the amount of entropy added by the shock wave

• Shocked material releases along a characteristic isentrope, determined by the shock pressure and the equation of state (EOS)

- weak shocks: $U_{\text{release}} \approx 2 U_p$
- strong shocks: (\geq 0.4 Mbar): 2 $U_p < U_{release} < 4 U_p$
- Shock release is studied using momentum-transfer analysis
- Initial results indicate EOS models underestimate the entropy added by shock waves

- Release physics is important for
 - understanding early stages of an inertial confinement fusion (ICF) implosion
 - impedance-match measurements
 - shockless compression (ICE) experiments
- Characterizing the shock release may allow EOS measurements in regions with pressures much lower than shock measurements

T. R. Boehly, P. M. Nilson, T. J. B. Collins, T. C. Sangster, and D. D. Meyerhofer

> Laboratory for Laser Energetics University of Rochester

D. E. Fratanduono, P. M. Celliers, and D. G. Hicks

Lawrence Livermore National Laboratory

The impedance-match method relies on the shock and release behaviors of a known standard

Upon release, shocked material accelerates as it rarifies into a vacuum

For strong shocks, the added entropy becomes large compared to the compressive work

Release follows an isentrope determined by final shock pressure at breakout

Target design enables low pressure regions of the CH release isentrope to be examined

Conservation of momentum is used to determine the release into vacuum

$$P_{wit,N} = \sum_{n=0}^{N} P_{rel,N} + P_{wit,0}$$

Measure V_{witness} using VISAR and get V_{release} from transit time. Iterate momentum over time accounting for mass increase and displacement of witness.

Release measurements indicate that LEOS 5111 is underestimating the release velocity

Summary/Conclusions

The release of a shocked material depends on the amount of entropy added by the shock wave

• Shocked material releases along a characteristic isentrope, determined by the shock pressure and the equation of state (EOS)

- weak shocks: $U_{\text{release}} \approx 2 U_p$
- strong shocks: (\geq 0.4 Mbar): 2 $U_p < U_{release} < 4 U_p$
- Shock release is studied using momentum-transfer analysis
- Initial results indicate EOS models underestimate the entropy added by shock waves