Polar-Drive Experiments with Shimmed Targets on OMEGA

F. J. Marshall University of Rochester Laboratory for Laser Energetics

54th Annual Meeting of the American Physical Society Division of Plasma Physics Providence, RI 29 October–2 November 2012

Polar-drive (PD) implosion symmetry on OMEGA has been improved by the use of shimmed targets

 Low adiabat, high convergence polar-driven implosions of D₂-filled, CH shells at a convergence ratio of 19 have been performed with triplepicket laser pulses

- The low-mode symmetry of the implosions, diagnosed with x-ray radiography, has been improved by using "shimmed" or shaped shells
- The combination of beam repointing and shell shimming has improved low-mode implosion symmetry over beam repointing alone

P. B. Radha, M. J. Bonino, J. A. Delettrez, R. Epstein, and S. Skupsky

Laboratory for Laser Energetics University of Rochester

E. Giraldez

General Atomics, San Diego, CA

High-convergence-ratio PD implosions with spherical shells achieved a small $\ell = 2$ with a remaining $\ell = 4$

Polar-drive shimmed targets consist of a capsule with a contoured wall thickness

• A series of *LILAC* runs (1-D hydro) were used to determine the shell thickness needed as a function of intensity

E21567

CH shells were precision machined at General Atomics to be as close as possible to the desired profile

Shimmed shells implode more symmetrically than spherical shells for the optimum polar-drive beam pointing

10-atm-D₂-filled, 27- μ m-thick CH shell, 14 kJ, triple picket implosions

• Framed x-ray radiographs, Ti backlighter (E ~ 4.7 keV)

Shimmed shell implosions are more symmetric and show good repeatability

10-atm-D₂-filled, 27- μ m-thick CH shell, 14 kJ, triple picket implosions

UR

• Framed x-ray radiographs, Ti backlighter (E ~ 4.7 keV)

The spherical shells become oblate at stagnation with the beam pointing used for the shimmed experiments

10-atm-D₂-filled, 27- μ m-thick CH shell, 14 kJ, triple picket implosion

DRACO simulations predict a shape close to that seen in the experiments.

The shimmed shells are much closer to spherical at stagnation for this choice of beam pointing

10-atm-D₂-filled, 27- μ m-thick CH shell, 14 kJ, triple picket implosion

DRACO simulations predict an $\ell = 4$ component larger than measured.

The best symmetry in PD implosions on OMEGA has been achieved with shimmed shells

 400×400 - μ m regions

Polar-drive (PD) implosion symmetry on OMEGA has been improved by the use of shimmed targets

 Low adiabat, high convergence polar-driven implosions of D₂-filled, CH shells at a convergence ratio of 19 have been performed with triplepicket laser pulses

UR 🔌

- The low-mode symmetry of the implosions, diagnosed with x-ray radiography, has been improved by using "shimmed" or shaped shells
- The combination of beam repointing and shell shimming has improved low-mode implosion symmetry over beam repointing alone

With the appropriate polar-drive pointing, the shimmed shell implodes more uniformly than the spherical shell

500 imes 500- μ m regions

With the appropriate polar-drive pointing, the shimmed shell implodes more uniformly than the spherical shell

LLE

