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Collisional Effects on Hot-Electron Generation  
in the Two-Plasmon–Decay Instability  

in Inertial Confinement Fusion
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Electron–ion collisions can reduce hot-electron 
generation in two-plasmon–decay (TPD) instablility*

TC10204

Summary

•	 Particle-in-cell	(PIC) simulations reveal a staged-acceleration 
mechanism for hot-electron generation in TPD*

•	 PIC	and	fluid	simulations	found	that	this	reduction	is	partially	
caused by collisional suppression of the nonlinear TPD modes 
away from the quarter-critical surface

– these modes form the first stage of hot-electron acceleration

*R. Yan et al., Phys. Rev. Lett. 108, 175002 (2012).
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TPD hot-electron generation has been studied  
with PIC simulations with parameters relevant  
to OMEGA experiments 

TC10205

•	 Hot	electrons	generated	in	TPD	
can preheat a target in inertial 
confinement fusion (ICF)

•	 PIC	simulation	is	a	useful	
tool to study TPD hot-electron 
generation

•	 Numerical	collisions	in	OSIRIS* 
are lower than physical collisions

– for n = 0.25 nc and Te = 3 keV,

•	 The	effects	of	physical collisions 
are studied by turning on/off the 
collisional package in OSIRIS

*R. A. Fonseca et al., Lect. Notes Comput. Sci. 2331, 342 (2002).
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The electron–ion collision package from OSIRIS  
is benchmarked by measuring the plasma-wave  
damping rates

TC10206

•	 Simulation	parameters

ne = 0.25 nc CH plasma

Te = 3 keV 100 particles/cell

•	 The	energy	of	a	plasma	wave	
should evolve like
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 Fitted results: ei
packageo  = 2.94 × 10–4 ~0 = 98% oei
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The high-k modes of electron plasma waves away from 
the quarter-critical surface are important for the first 
stage of acceleration*

TC10207

•	 New	modes	away	from	
the quarter-critcal surface 
appear in the nonlinear stage 
and form the first stage of 
electron acceleration

•	 Hot	electrons	are	stage	
accelerated from left to right

•	 It	is	important	to	know	the	
nature and phase velocities 
of the high-k modes

*R. Yan et al., Phys. Rev. Lett. 108, 175002 (2012).
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Fluid* simulations show that the high-k modes  
are	TPD	modes	under	ion-density	fluctuations**
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•	 LTS*	is	a	fluid	code	solving	the	 
full linear PDE’s of TPD
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•	 Static	background	ion-density	
fluctuations	taken	from	OSIRIS 
can be added to LTS

  n0 " n0 + dn

•	 The	high-k modes have 
significant growth in LTS only 
when	ion-density	fluctuations	
are introduced

 * R. Yan, A. V. Maximov, and C. Ren, Phys. Plasmas 17, 052701 (2010).
 ** R. Yan et al., Phys. Rev. Lett. 108, 175002 (2012).
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Collisions can reduce the strength of the high-k modes
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The TPD modes in the low density region can develop wherever 
the growth rate is higher than the local e-i collision rate.
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The longitudinal electrostatic field energy and  
hot-electron generation are reduced by collisions
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•	 Collisions	reduce	the	efficacy	of	the	staged-acceleration	mechanism

– increase the phase velocity of the first-stage plasma wave

– reduce the amplitude of all plasma waves

Longitudinal 
electric field energy fx

Hot-electron
energy flux
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TC10204 *R. Yan et al., Phys. Rev. Lett. 108, 175002 (2012).

Summary/Conclusions

Electron–ion collisions can reduce hot-electron 
generation in two-plasmon–decay (TPD) instablility*

•	 Particle-in-cell	(PIC) simulations reveal a staged-acceleration 
mechanism for hot-electron generation in TPD*

•	 PIC	and	fluid	simulations	found	that	this	reduction	is	partially	
caused by collisional suppression of the nonlinear TPD modes 
away from the quarter-critical surface

– these modes form the first stage of hot-electron acceleration


