Hydrodynamic Stability of Direct-Drive Targets with High-Z Ablators

High-Z ablator (SiO₂)

First unstable ablation front

Second unstable ablation front

Thermal ablation front

σouter = 17 μm
σinner = 3 μm

CH ablator

σouter = 23 μm
σinner = 4 μm

M. Lafon
University of Rochester
Laboratory for Laser Energetics

54th Annual Meeting of the American Physical Society
Division of Plasma Physics
Providence, RI
29 October–2 November 2012
Summary

The use of high-Z ablators in direct-drive implosions is promising

- Cryogenic targets using ablators with a Z higher than plastic have higher two-plasmon–decay (TPD) intensity thresholds, decreasing the shell preheat caused by hot electrons.

- Hydrodynamic simulations using ablators ranging from carbon to silicon show similar Rayleigh–Taylor (RT) instability growth.

- A multilayer target, designed for sub-MJ shock ignition on the NIF, employs a graded-Z ablator and exhibits slightly improved stability in comparison with plastic-ablator targets.
R. Nora†, K. S. Anderson, and R. Betti†
Laboratory for Laser Energetics
University of Rochester
†also Fusion Science Center for Extreme States of Matter
High-Z ablators are expected to reduce the hot-electron preheat caused by TPD instability.

The TPD growth rate* is

\[\dot{\gamma} = \frac{L_{\mu m} I_{14}}{230 T_{keV}} - 1 - \frac{0.3 Z_{\text{eff}} L_{\mu m} \sqrt{I_{14}}}{230 T_{keV}^{5/2}} \]

High-Z materials increase the intensity threshold of the TPD instability.

High-Z ablator targets exhibit a double ablation front* and a classical interface

- Modulations of density grow exponentially with a linear growth rate** given by
 \[\gamma_{RT} = \sqrt{\frac{A_T kg}{1 + A_T kL}} - 3 kV_a \]
 with \[A_T = \frac{\rho_{max} - \rho_{min}}{\rho_{max} + \rho_{min}} \]

- The thermal front is almost fully stabilized by mass ablation
- The RT instability grows almost classically at the radiative front and the DT–SiO₂ interface

Hydrodynamic stability is studied for different high-Z ablators ranging from carbon to silicon.

Peak laser intensity: $9 \times 10^{14} \text{ W/cm}^2$

$V_{\text{imp}} = 390 \text{ km/s}$

$\alpha \sim 2.5$
Single-mode simulations show a slightly lower RT instability growth factor for high-Z ablators

- During the linear phase, the RT instability grows as $e^{\gamma t}$, where γ is the growth rate and γt is the number of e foldings.
High-Z ablators exhibit similar perturbations of the shell during the acceleration phase

Imprint simulations with $\ell < 200$ at $R = R_0/2$

- The plateau length D_p is longer for higher-Z material
- High-ℓ modes develop at the radiative front
A high-Z ablating target has been designed for shock ignition on the NIF at sub-MJ energies.

Gain (1-D): 62

- V_{imp} (km/s): 260
- Adiabat: 1.4
- IFAR$_{2/3}$: 23

Spike pulse: 230 kJ focused at ~0.4 R_0

Main drive: 630 kJ focused at ~R_0

Gain (1-D): 64

- V_{imp} (km/s): 262
- Adiabat: 1.3
- IFAR$_{2/3}$: 28
The RT growth is mitigated by finite density gradients generated by multiple layers of doped plastic.

Using graded doping of plastic layers reduces the RT growth in a double-ablation-front structure.
The high-Z ablator design exhibits a slightly improved stability over the plastic ablator target.

Imprint simulations with $\ell < 200$ at the end of the acceleration phase.

High-Z ablator (SiO$_2$)
- First unstable ablation front
- Second unstable ablation front
- Thermal ablation front

First unstable ablation front
- $\sigma_{\text{outer}} = 17 \ \mu$m
- $\sigma_{\text{inner}} = 3 \ \mu$m

CH ablator
- First unstable ablation front
- Second unstable ablation front

Second unstable ablation front
- $\sigma_{\text{outer}} = 23 \ \mu$m
- $\sigma_{\text{inner}} = 4 \ \mu$m

Density (g/cc)
- Red: 8
- Orange: 5
- Green: 3
- Blue: 0
The use of high-Z ablators in direct-drive implosions is promising

- Cryogenic targets using ablators with a Z higher than plastic have higher two-plasmon–decay (TPD) intensity thresholds, decreasing the shell preheat caused by hot electrons
- Hydrodynamic simulations using ablators ranging from carbon to silicon show similar Rayleigh–Taylor (RT) instability growth
- A multilayer target, designed for sub-MJ shock ignition on the NIF, employs a graded-Z ablator and exhibits slightly improved stability in comparison with plastic-ablator targets