Hydrodynamic Stability of Direct-Drive Targets with High-Z Ablators

M. Lafon University of Rochester Laboratory for Laser Energetics 54th Annual Meeting of the American Physical Society Division of Plasma Physics Providence, RI 29 October–2 November 2012

The use of high-Z ablators in direct-drive implosions is promising

- Cryogenic targets using ablators with a Z higher than plastic have higher two-plasmon–decay (TPD) intensity thresholds, decreasing the shell preheat caused by hot electrons
- Hydrodynamic simulations using ablators ranging from carbon to silicon show similar Rayleigh–Taylor (RT) instability growth
- A multilayer target, designed for sub-MJ shock ignition on the NIF, employs a graded-Z ablator and exhibits slightly improved stability in comparison with plastic-ablator targets

R. Nora[†], K. S. Anderson, and R. Betti[†]

Laboratory for Laser Energetics University of Rochester [†]also Fusion Science Center for Extreme States of Matter

High-Z ablators are expected to reduce the hot-electron preheat caused by TPD instability

High-Z materials increase the intensity threshold of the TPD instability.

*A. Simon et al., Phys. Fluids 26, 3107 (1983).

R. Betti, JO4.00005, this conference.

J. Myatt, TO5.00005, this conference.

High-Z ablator targets exhibit a double ablation front* and a classical interface

- The thermal front is almost fully stabilized by mass ablation
- The RT instability grows almost classically at the radiative front and the DT–SiO₂ interface

*S. Fujioka et al., Phys. Plasmas <u>11</u>, 2814 (2004).

^{**}H. Takabe et al., Phys. Fluids <u>28</u>, 3676 (1985).

Hydrodynamic stability is studied for different high-Z ablators ranging from carbon to silicon

Single-mode simulations show a slightly lower RT instability growth factor for high-Z ablators

• During the linear phase, the RT instability grows as $e^{\gamma t}$, where γ is the growth rate and γt is the number of e foldings

High-Z ablators exhibit similar perturbations of the shell during the acceleration phase

- The plateau length *D_P* is longer for higher-*Z* material
- High- ℓ modes develop at the radiative front

A high-Z ablator target has been designed for shock ignition on the NIF at sub-MJ energies

The RT growth is mitigated by finite density gradients generated by multiple layers of doped plastic

Using graded doping of plastic layers reduces the RT growth in a double-ablation-front structure.

The high-Z ablator design exhibits a slightly improved stability over the plastic ablator target

Imprint simulations with ℓ < 200 at the end of the acceleration phase

CH ablator

LLE

The use of high-Z ablators in direct-drive implosions is promising

- Cryogenic targets using ablators with a Z higher than plastic have higher two-plasmon–decay (TPD) intensity thresholds, decreasing the shell preheat caused by hot electrons
- Hydrodynamic simulations using ablators ranging from carbon to silicon show similar Rayleigh–Taylor (RT) instability growth
- A multilayer target, designed for sub-MJ shock ignition on the NIF, employs a graded-Z ablator and exhibits slightly improved stability in comparison with plastic-ablator targets