Fuel–Ablator Mix from Surface Nonuniformities in Directly Driven Implosions

Summary

Fuel-ablator mix induced by surface defects limits the performance of low-adiabat cryogenic implosions on OMEGA

- Pre-shot evaluation of cryogenic targets typically reveals a significant number (from several tens to hundreds) of surface debris/condensates with the dimensions from <1 μ m and up to 50 μ m*
- 2-D hydrodynamic simulations show that such defects can develop perturbations, which produce holes in implosion shells and result in injection of ablator inside targets
- Predicted performance of low-adiabat ($\alpha < 2.5$)** OMEGA implosions with fuel–ablator mix in the core is consistent with measurements

V. N. Goncharov, T. R. Boehly, R. Epstein, W. T. Shmayda, T. C. Sangster, and S. Skupsky

> Laboratory for Laser Energetics University of Rochester

Low-adiabat (α < 2.5) cryogenic OMEGA implosions consistently underperform with respect to 1-D predictions*

Outer surface defects most probably cause the performance degradation.

LLE

Various surface defects in cryogenic targets are developed during manufacturing/ice-shell forming process

Most-damaging defects:

Condensates Radiolytic CH_4 , $N_{2, ...}$ Diameter ~20 μ m, $h > 3 \mu$ m

Debris Particles (AI, Mo,...) Diameter <1 μ m to ~50 μ m

- Several tens to hundreds of defects are typically observed
- Submicron defects are not observable, but can be damaging

${\sim}10\text{-}\mu\text{m}\text{-size}$ surface defects can result in injection of ablator inside implosion targets

Cryogenic target with a surface spot (10 μm \times 1 $\mu\text{m})$

*T. R. Boehly, JO4.00014, this conference.

UR

${\sim}10\text{-}\mu\text{m}\text{-size}$ surface defects can result in injection of ablator inside implosion targets (continued)

Cryogenic target with a surface spot (10 μ m × 1 μ m)

 Hole is developed in the accelerated shell

 Ablator material is injected inside

Significant perturbations of target shells and interior are predicted from one defect

UR

- Ablator material is driven through the hole by the ablation pressure
- Self-generated magnetic fields enhance the injection

Two-dimensional simulations in a narrow cone mimic the large number of debris/condensates in real implosions

- Effect of multiple defects is accounted using reflection boundaries
- Assumed cone angle π/10 (~150 surface defects)
- 3-D effects caused by different defect sizes and placements are not addressed

Simulations of low-adiabat (α < 2.5) implosions with multiple defects show significant fuel–ablator mix in the core

Predicted performance of low-adiabat implosions with fuel-ablator mix is consistent with measurements

Shot 66613	Neutron yield	hoR (mg/cm ²)	T _i (keV)
Experiment	5.5 × 10 ¹²	130	2.2
Simulations/symmetric	1.0 × 10 ¹⁴	324	3.18
Simulations/defects	3.1 × 10 ¹²	120	2.38

- Simulations of five different low-adiabat ($\alpha \sim$ 2) implosions with defects show similar agreements

Summary/Conclusions

Fuel-ablator mix induced by surface defects limits the performance of low-adiabat cryogenic implosions on OMEGA

- Pre-shot evaluation of cryogenic targets typically reveals a significant number (from several tens to hundreds) of surface debris/condensates with the dimensions from <1 μ m and up to 50 μ m*
- 2-D hydrodynamic simulations show that such defects can develop perturbations, which produce holes in implosion shells and result in injection of ablator inside targets
- Predicted performance of low-adiabat (α < 2.5)** OMEGA implosions with fuel–ablator mix in the core is consistent with measurements