Burning DT Plasmas with Ultrafast Soft X-ray Pulses

S. X. Hu University of Rochester Laboratory for Laser Energetics 54th Annual Meeting of the American Physical Society Division of Plasma Physics Providence, RI 29 October–2 November 2012

Soft x-ray fast ignition* (SXFI) has been proposed for igniting DT plasmas assembled on OMEGA and the NIF

- Fast ignition with soft x-ray flashing has been investigated for highdensity deuterium–tritium (DT) plasmas assembled on OMEGA and the NIF, using 2-D DRACO simulations
- Coherent soft x-ray sources with $h\nu = 500$ -eV photons are efficient for igniting dense DT plasmas
- Burning plasma conditions are predicted on Omega with 200 to 500 J energy for: 10-ps soft x-ray pulse, $h\nu = 500 \text{ eV}$, focused into a 10- μm spot

V. N. Goncharov and S. Skupsky

Laboratory for Laser Energetics University of Rochester

X-ray fast ignition (XFI)* was proposed to use hard x-rays $(h\nu) = 3 \text{ to } 6 \text{ keV}$) from "fourth generation" synchrotrons

Advantages of XFI:

- The heating source can be separated from the dense-plasma assembly for better implosion integrity
- The heating x-ray pulse energy can be delivered directly to the dense DT plasma regions
- X-ray pulse energy can be more easily propagated through plasmas than charge particles
- The energy requirement for XFI can be orders of magnitude lower than other FI schemes because of its "layer-by-layer" heating mechanism

The energy requirement for XFI can be orders of magnitude lower than other FI schemes because of its "layer-by-layer" heating mechanism

^{*}V. Shlyaptsev and R. Tatchyn, Proc. SPIE 5194, 30 (2004).

The unique "*layer-by-layer*" heating of soft x rays reduces the energy requirement for plasma burning

- For $\rho = 100$ g/cm³ and T = 200 eV, penetration distance D $\simeq 0.4$ - μ m
- For ρ = 100 g/cm³ and T = 5 eV, penetration distance D \simeq 4.7- μ

Higher-density DT plasmas for fast ignition can be assembled by intentionally offsetting the target

DT plasma burning with soft x-ray pulse towards *breakeven* is illustrated in *DRACO* simulations

Scanning the soft x-ray pulse energy, the *break-even* threshold is found to be around ~1 kJ for this Omega design*

*S. X. Hu, V. N. Goncharov, and S. Skupsky, Phys. Plasmas <u>19</u>, 072703 (2012).

The energy requirement for SXFI could be further reduced by using high-compression pulse shapes

TC10170

Scaling the idea of SXFI to a 1-MJ NIF target, gains above ~30 can be obtained with 1.65-kJ soft x rays

Ways to generate such powerful soft x-ray sources remain to be explored

- Coherent XUV and soft x-ray radiations can be generated from an intense IR-pulse reflection off a relativistic flying mirror (plasma wave)*, frequency upshift by $\sim 4\gamma^2$
- Tunable radiation may be generated from laser-pulse reflection from an ionization front**
- Coherent synchrotron emission (harmonics) in the transmission direction can be produced from relativistic intense laser-thin-foil interactions***
- X-ray lasers or fourth-generation synchrotrons?

^{*}M. Kando et al., Phys. Rev. Lett. 103, 235003 (2009); S. V. Bulanov,

T. Esirkepov, and T. Tajima, Phys. Rev. Lett. <u>91</u>, 085001 (2003).

^{**} W. B. Mori, Phys. Rev. A <u>44</u>, 5118 (1991).

^{***}B. Dromey et al., "Coherent Synchrotron Emission from Electron Nanobunches Formed in Relativistic Laser-Plasma Interactions," to be published in Nature Physics; D. an der Brügge and A. Pukhov, Phys. Plasmas <u>17</u>, 033110 (2010).

Soft x-ray fast ignition* (SXFI) has been proposed for igniting DT plasmas assembled on OMEGA and the NIF

- Fast ignition with soft x-ray flashing has been investigated for highdensity deuterium–tritium (DT) plasmas assembled on OMEGA and the NIF, using 2-D DRACO simulations
- Coherent soft x-ray sources with $h\nu = 500$ -eV photons are efficient for igniting dense DT plasmas
- Burning plasma conditions are predicted on Omega with 200 to 500 J energy for: 10-ps soft x-ray pulse, $h\nu = 500 \text{ eV}$, focused into a 10- μm spot