Shock-Ignition Studies in Planar Geometry on OMEGA

Spike intensity (×10¹⁵ W/cm²)

54th Annual Meeting of the American Physical Society Division of Plasma Physics Providence, RI 29 October–2 November 2012

M. Hohenberger University of Rochester Laboratory for Laser Energetics

Strong-shock generation and laser-plasma instabilities (LPI) at shock-ignition-relevant intensities are investigated in planar experiments

- At 5×10^{15} W/cm², 4% of the laser energy is converted into hot electrons with $T_{e} \sim 80$ keV
- Shock propagation data show efficient coupling of the high-intensity spike at intensities of mid-10¹⁵ W/cm²
- Preliminary 2-D DRACO simulation results suggest peak pressures of ~180 Mbar were achieved at a drive intensity of 5×10^{15} W/cm²

W. Theobald, K. S. Anderson, R. Betti, S. X. Hu, T. R. Boehly, D. D. Meyerhofer, T. C. Sangster, W. Seka, C. Stoeckl, K. S. Anderson, and B. Yaakobi

> University of Rochester Laboratory for Laser Energetics

> > A. Casner

CEA, DAM, DIF, Arpajon, France

X. Ribeyre and G. Schurtz CELIA Université de Bordeaux, Talence, France

Shock ignition (SI) uses a non-isobaric fuel assembly to achieve a lowered ignition condition*

The high-intensity spike needs to generate ~300-Mbar of ablation pressure.**

**See invited talk by K. S. Anderson, UI2.00005, this conference

^{*}R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).

We have developed a basic-science platform to investigate strong-shock formation and LPI at SI-relevant conditions

- Planar targets are irradiated with overlapping beams
- 800-µm focal spots in plasma-generating beams
- 260-µm focal spot in strong-shock beams

The hot electron temperature and conversion efficiency have been measured up to $5 \times 10^{15} \, W/cm^2$

- T_{hot} is measured with time-resolved, four-channel hard x-ray detector*
- E_{hot} is determined through absolute Mo K_{α} yield and Monte Carlo simulations of electron stopping^{**}

At 5×10^{15} W/cm² approximately 5% of the spike laser is converted to hot electrons at a temperature of ~80 keV.

^{*}C. Stoeckl et al., Rev. Sci. Instrum. 72, 1197 (2001).

^{**} B. Yaakobi et al., Phys. Plasmas 19, 012704 (2012).

The shock propagation in the quartz layer gives information about the strong-shock coupling

Features in the streaked optical pyrometry data (SOP) identify unique events in the shock propagation through the SiO₂ layer $\hfill \square B$

Features in the streaked optical pyrometry data (SOP) identify unique events in the shock propagation through the SiO₂ layer $\hfill \square B$

The coalescence of pre-plasma and strong shock is observed in the SOP data

The time of shock coalescence is reduced with increasing intensity

• Time of coalescence is approximated by t $\propto I^{\alpha}$ with $\alpha < -0.5$, determined by the geometry of both shocks

UR

 Preliminary 2-D DRACO simulations suggest peak pressures up to ~180 Mbar were achieved

Data confirm efficient laser coupling at SI-relevant intensities.

Summary/Conclusions

Strong-shock generation and laser–plasma instabilities (LPI) at shock-ignition–relevant intensities are investigated in planar experiments

- At 5×10^{15} W/cm², 4% of the laser energy is converted into hot electrons with $T_{e} \sim 80$ keV
- Shock propagation data show efficient coupling of the high-intensity spike at intensities of mid-10¹⁵ W/cm²
- Preliminary 2-D DRACO simulation results suggest peak pressures of ~180 Mbar were achieved at a drive intensity of 5×10^{15} W/cm²