Absolute Ion-Temperature Measurements in Inertial Confinement Fusion (ICF) Implosions on OMEGA

Laboratory for Laser Energetics

29 October–2 November 2012

The ion temperature in D_2 and DT implosions on OMEGA is measured with better than 10% accuracy

UR 🔌

- Several neutron time-of-flight (nTOF) detectors with different instrumentation, sensitivity, and distance from a target are used on OMEGA to measure ion temperature
- The instrument response function (IRF) for D₂ neutrons was constructed from x-ray measurements with better than 10% accuracy
- The instrument response function (IRF) for DT neutrons was measured directly with better than 5% accuracy

Collaborators

C. Stoeckl, T. C. Sangster, and C. J. Forrest

Laboratory for Laser Energetics University of Rochester

R.A. Lerche

Lawrence Livermore National Laboratory

Many factors contribute to ion temperature measurements by neutron time-of-flight (TOF) detectors

- Ion temperature transforms by TOF into temporal width ∆t (ps) that depends on*
 - ion temperature, *T*_i (keV)
 - detector distance, d (meters)
 - neutron type
 - DT $\Delta t = 122d\sqrt{T_i}$ D₂ $\Delta t = 778d\sqrt{T_i}$
- Fast detectors, large distances, and high neutron statistics are required for ion temperature measurements

Precision measurement or construction of instrument response function (IRF) is necessary for absolute measurement of T_i .

The OMEGA nTOF system consists of several detectors based on three different techniques

Plastic scintillator (BC-422 or BC-422Q) coupled with a gated photomultiplier tube (PMT) or photodiode

 Oxygen-saturated liquid scintillator with gated PMT

 Detectors based on chemical-vapordeposition (CVD) diamonds

UR 🔌

The nTOF3.5×1 detector was used for ion temperature measurements in D₂ implosions

- $90 \times 20 \text{ mm}$ BC-422 plastic scintillator
- Two gated PMT-240 for D₂ measurements
- Short (4 m) LMR-600 cables
- Two DPO 7104 scopes with 100 ps sampling
- No shielding, can measure x ray IRF

UR 🔌

The nTOF3.5×1 detector can be installed in TIM6 collimated LOS

The IRFs of nTOF detectors for D₂ ion temperature measurements were constructed in multiple steps

The x-ray IRF for nTOF3.5×1 detector was measured with an 100 ps x-ray pulse

UR 🔌 LLE

- The x-ray IRF was converted to neutron IRF with propagation corrections
- Ion temperature was measured with nTOF3.5×1 detector
- The IRF of 12m nTOFL was adjusted to match nTOF3.5×1 T_i values

The independently measured D₂ ion temperatures are consistent with precision of 5%

D_2 shots with yields > 1 × 10¹⁰

The neutron IRF of 5.0mCVD detector was directly measured in low T_i , low yield DT shots at 40 cm from TCC

The DT yield and ion temperature are independently measured on OMEGA by at least two nTOF detectors

The independently measured DT ion temperatures are consistent with accuracy better than 5%

1.6 7 *T*_i (12 m nTOF) T_i (keV) from 12mnTOFH 1.4 T_i ratio = ▲ *T*i data 6 T_i (5.0 m CVD) Function y = x1.2 5 1.0 T_i ratio 4 0.8 2012 2011 3 0.6 rms = 6.7% 2 0.4 0.2 0.0 0 40 6 10 20 30 5 0 50 2 3 7 0 Λ Shot number T_i (keV) from 5.0 m CVD

DT shots with yields $> 4.0 \times 10^{12}$

The ion temperature in D_2 and DT implosions on OMEGA is measured with better than 10% accuracy

UR 🔌

- Several neutron time-of-flight (nTOF) detectors with different instrumentation, sensitivity, and distance from a target are used on OMEGA to measure ion temperature
- The instrument response function (IRF) for D₂ neutrons was constructed from x-ray measurements with better than 10% accuracy
- The instrument response function (IRF) for DT neutrons was measured directly with better than 5% accuracy