Areal-Density Variations from Cold-Fuel Distributions in Layered Cryogenic-DT Implosions

Symmetric mode

Asymmetric mode

Down-scattered neutron energy spectrum

Symmetric mode

Asymmetric mode

Backscattered

Forward scattered

Energy (MeV)

0 2 4 6 8 10 12

54th Annual Meeting of the American Physical Society Division of Plasma Physics Providence, RI 29 October–2 November 2012

C. J. Forrest
University of Rochester Laboratory for Laser Energetics

DT cold fuel

OMEGA

nTOF detector

DT cold fuel

OMEGA

nTOF detector

dN/dE

0 50 100 150 200
Summary

Modeling shows that (low-mode) cold-fuel distributions can be inferred from the down-scattered neutron energy spectrum

- The neutron spectrum in the (1- to 6- meV) range is used to infer the areal density of cryogenic-DT implosions on OMEGA*
- The Monte Carlo neutron-particle (MCNP) is used to understand the down-scattered neutron energy spectrum from DT implosions (1 to 14 MeV)
- MCNP simulations show that areal-density measurements on OMEGA are not affected by the multiple scattering background process

Collaborators

Laboratory for Laser Energetics
University of Rochester

S. Gardner

Constellation Energy Nuclear Group
Ontario, NY

D. Baldwin and S. J. Padalino

SUNY Geneseo, Geneseo, NY
The neutron energy spectrum in ICF implosions depends on well-understood nuclear processes in the fuel.

The total neutron energy spectrum is required to infer the fuel ρR in the backscattered region (1 to 6 meV).

The theoretical down-scattered neutron energy spectrum is based only on the elastic scattering cross sections. MCNP is used to determine possible modifications to the measured neutron energy spectrum caused by multiple scattering.

\[
\frac{dN}{dE} = \frac{\rho R}{Y_n^\prime/Y_n} \tag{†}
\]

Elastically scattered neutrons

\[
\text{nD endpoint, nT endpoint}
\]

Primary DT

\[
Y_n^\prime, Y_n
\]

\[
\text{Energy (MeV)}
\]

Hydro simulations

IRIS*

The shapes of the elastic neutron scattering cross sections have been confirmed with high accuracy.

The accuracy of the scattering cross sections is the basis for the ρR measurements.

MCNP is a standard tool for neutron transport simulations.

Custom tallies in the code record the last position and energy of the particle as seen by the nTOF.
A visualization tool (IViPP)\(^*\) is used as a consistency check on the MCNP recorded output.

\(\text{OMEGA} \quad \text{nTOF detector} \)

\(\text{Scatter event} \quad \begin{align*} 1 & \rightarrow \text{green} \\ 2 & \rightarrow \text{purple} \\ 3 & \rightarrow \text{red} \\ 4 & \rightarrow \text{yellow} \end{align*} \)

Cross sections

\(\text{nD} \quad nT \)

*\(D.\) Baldwin, IViPP, http://cs.geneseo.edu/~baldwin/ivipp/\)
Simulations show that the multiple scattering component does not affect the backscattered neutron measurement.

The multiple scattering component becomes nonlinear with higher areal densities ($\rho R > 300$ mg/cm2).

- Average ρR on OMEGA 200 mg/cm2
An asymmetric (low-mode) cold-fuel distribution does affect the neutron energy spectrum.
Asymmetries in the cold-fuel distribution can be measured with specific detection positions.

A single line of sight that measures both the forward and backscattered neutron energy spectrum is another approach to infer ρR asymmetries.
Summary/Conclusions

Modeling shows that (low-mode) cold-fuel distributions can be inferred from the down-scattered neutron energy spectrum

- The neutron spectrum in the (1- to 6- meV) range is used to infer the areal density of cryogenic-DT implosions on OMEGA*

- The Monte Carlo neutron-particle (MCNP) is used to understand the down-scattered neutron energy spectrum from DT implosions (1 to 14 MeV)

- MCNP simulations show that areal-density measurements on OMEGA are not affected by the multiple scattering background process

C. J. Forrest et al., Rev. Sci. Instrum. 83, 10D919 (2012).