Spectroscopy of Mid-Z Shell Additives in Implosions at the National Ignition Facility

Fluorescence in warm dense plasma

Kα line and K-shell continuum

Cu, Ge, Si doped CH

Cu and Ge Heα satellite line emission

Radiative coupling of shell mass objects

R. Epstein
University of Rochester
Laboratory for Laser Energetics

54th Annual Meeting of the American Physical Society
Division of Plasma Physics
Providence, RI
29 October–2 November 2012
Our NIF shell-dopant spectrum analysis takes several important issues into account:

- The atomic-kinetic radiation-transport effects on He$_\alpha$ satellite line emission from dopants are treated adequately in a model representing the shell material mixed into the core as small, independently radiating objects.

- External radiation within the hohlraum temperature range will not significantly affect the dopant ionization or line emission.

- Cu and Ge cold-material values of K$_\alpha$ fluorescence efficiencies will be sufficiently accurate under warm dense shell conditions.
Collaborators

S. P. Regan1, T. C. Sangster, and J. L. Tucker2
University of Rochester
Laboratory for Laser Energetics

R. L. McCrory, D. D. Meyerhofer
University of Rochester
Laboratory for Laser Energetics, and
Departments of Mechanical Engineering and Physics and Astronomy

B. A. Hammel, L. J. Suter, H. Scott, D. A. Callahan, C. Cerjan, N. Izumi,
M. H. Key, O. L. Landen, N. B. Meezan, B. A. Remington
Lawrence Livermore National Laboratory

I. E. Golovkin, and J. J. MacFarlane3
Prism Computational Sciences

R. C. Mancini
University of Nevada, Reno

K. J. Peterson
Sandia National Laboratories

1PO4.00009, this conference
2LLE Summer High School Research Program
3CP8.00069, this conference
Mix mass is modeled as multiple spheres of ablator mass with uniform plasma conditions and areal density.

- Hot-spot mix-mass analysis assumes:
 - 250-ps emission
 - The original shell dopant concentration
 - Shell transmission based on simulations

<table>
<thead>
<tr>
<th>Layer</th>
<th>Dopant (atm. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cu (0.1%)</td>
</tr>
<tr>
<td>2</td>
<td>Si (0.7%) Ge (0.15%)</td>
</tr>
<tr>
<td>3</td>
<td>Si (1.7%) Ge (0.15%)</td>
</tr>
<tr>
<td>4</td>
<td>Si (1%)</td>
</tr>
<tr>
<td>5</td>
<td>None</td>
</tr>
</tbody>
</table>

Atomic model fit gives estimates of: \(T, \rho, \) and \(\rho R \)
Mix mass is estimated from the absolute brightness of the Ge He$_\alpha$ line satellites*

- The total Ge ion number is obtained from the total He$_\alpha$ satellite line emission and a PrismSPECT** model of the line intensity per Ge ion

- Modeling includes term-split spectral detail, accurate line profiles,† and radiation-kinetic coupling for a sphere of areal density ρR and mass $m = 4\pi(\rho R)^3/(3\rho^2)$

- The Ge concentration and ion number give the total mix mass M

- With a number of spheres $N = M/m$ occupying a fraction f of the hot-spot volume, the probability that an escaping dopant photon will encounter a second sphere is $N^{1/3}f^{2/3} \sim 0.1$. Therefore,

 the shell-material spheres radiate independently.

A T_R-modified Saha equation estimates the effect of external radiation on the ionization state of additive ions:

$$\frac{n_2}{n_1} = \frac{n_e C_{12}(T_e) + R_{12}(T_e, T_R)}{n_e C_{21}(T_e) + n_e [R_{21}^{\text{spontaneous}}(T_e) + R_{21}^{\text{stimulated}}(T_e, T_R)]}$$

- $T_R = T_e$, LTE
- Small photoionization effect
- $T_R = 0$, CRE
- All T_R such that $1 < \frac{n_2/n_1}{(n_2/n_1)_{\text{CRE}}} < 2$

For Si:
- $n_e = 1.3 \times 10^{23} \text{ cm}^{-3}$
- T_R affects ionization
- Small T_R effect

For Ge:
- $n_e = 1.2 \times 10^{23} \text{ cm}^{-3}$
- T_R affects ionization
- Small T_R effect
A radiation temperature of $T_R < 300$ eV does not substantially change the ionization of dopants at T_e above ~ 500 eV.

PrismSPECT* results

1% Si in CH

1% Ge in CH

$T_e = 2000$ eV

$T_e = 500$ eV

$\rho = 0.5$ g/cm3

$\rho = 5$ g/cm3

$\rho = 50$ g/cm3
The measured K_α emission is consistent with the K-shell absorption of the core continuum*

\[
\int I_{K_\alpha} \frac{d\nu}{\nu} \sim \omega_{K_\alpha}
\]

\[
\mu_K \rho_{Ge} R = \ln \left[\frac{I_{K\text{ edge}}}{I_{K\text{ edge}} - \Delta I_{K\text{ edge}}} \right]
\]

Ge fluorescence efficiency: $\omega_{K_\alpha} = 0.539**$

The cold ω_K is a good approximation for the Ge Kα fluorescence efficiency for ionization below Ne-like.

From level population (P_L, P_M) scaling:

$$\omega_K = \frac{[A_\alpha P_L + A_\beta P_M]}{[A_\alpha P_L + A_\beta P_M] + [A_{K,LL}P_L^2 + A_{K,LM}P_LP_M + \text{etc.}]}$$

ω_K vs. Ion charge Z

Emission: A_α, A_β

Autoionization: $A_{K,LL}, A_{K,LM}$

$$\frac{\omega_{K_\beta}}{\omega_{K_\alpha}} = \frac{A_\beta P_M}{A_\alpha P_L}$$

Free-electron effects alter the isolated-atom K_α fluorescence efficiency of Ge and Cu only slightly.

- Collisional decay (C_α), recombination ($C_{R,K}$), and radiative recombination ($R_{R,K}$) compete with autoionization and K_α emission and reduce the isolated-atom value of $\omega_{K_\alpha}\!^*$

$$\omega_{K_\alpha}^{\text{corrected}} = \frac{A_\alpha}{A_\alpha + A_{\text{auto}} + C_\alpha + C_{R,K} + R_{R,K}} = 1 + (C_\alpha + C_{R,K} + R_{R,K})(\omega_{K_\alpha}/A_\alpha)$$

Correction terms for $n_e = 10^{25}$ cm$^{-3}$ and $kT_e = 100$ eV:

$$\omega_{K_\alpha} C_\alpha/A_\alpha \leq 5.9 \times 10^{-2}$$
$$\omega_{K_\alpha} C_{R,K}/A_\alpha \leq 9.2 \times 10^{-4}$$
$$\omega_{K_\alpha} R_{R,K}/A_\alpha \leq 3.1 \times 10^{-2}$$

Our NIF shell-dopant spectrum analysis takes several important issues into account

- The atomic-kinetic radiation-transport effects on He$_\alpha$ satellite line emission from dopants are treated adequately in a model representing the shell material mixed into the core as small, independently radiating objects.

- External radiation within the hohlraum temperature range will not significantly affect the dopant ionization or line emission.

- Cu and Ge cold-material values of K$_\alpha$ fluorescence efficiencies will be sufficiently accurate under warm dense shell conditions.
The cold ω_K is a good approximation for the Ge $K\alpha$ fluorescence efficiency for ionization below Ne-like.

From level population (P_L, P_M) scaling:

$$\omega_K = \frac{[A_\alpha P_L + A_\beta P_M]}{[A_\alpha P_L + A_\beta P_M] + [A_{K,LL} P_L^2 + A_{K,LM} P_L P_M + \text{etc.}]}$$

For Ge:

- $A_{K,LL} = 1.08 \times 10^{15} \text{ sec}^{-1}$
- $A_{K,LM} = 2.90 \times 10^{14} \text{ sec}^{-1}$
- $A_\alpha = 1.65 \times 10^{15} \text{ sec}^{-1}$
- $A_\beta = 2.64 \times 10^{14} \text{ sec}^{-1}$

$$\frac{\omega_{K\beta}}{\omega_{K\alpha}} = \frac{A_\beta P_M}{A_\alpha P_L}$$

* E. J. McGuire, Phys. Rev. 185, 1 (1969);
Free-electron effects alter the isolated-atom K_α fluorescence efficiency of Ge and Cu only slightly

- Collisional decay (C_α), recombination ($C_{R,K}$), and radiative recombination ($R_{R,K}$) compete with autoionization and K_α emission and reduce the isolated-atom value of $\omega_{K_\alpha}^*$

$$\omega_{K_\alpha}^{\text{corrected}} = \frac{A_\alpha}{A_\alpha + A_{\text{auto}} + C_\alpha + C_{R,K} + R_{R,K}} = 1 + \left(\frac{\omega_{K_\alpha}}{0.54}\frac{\eta_e}{10^{24}}\right) \left(\frac{h\nu_\alpha}{9.8 \text{ keV}}\right)^3 \left(\frac{kT}{0.1 \text{ keV}}\right)^{1/2}$$

$$\frac{\omega_{K_\alpha} C_\alpha}{A_\alpha} = 5.9 \times 10^{-3} \left(\frac{h\nu_\alpha}{9.8 \text{ keV}}\right)^3 \left(\frac{kT}{0.1 \text{ keV}}\right)^{1/2}$$

$$\frac{\omega_{K_\alpha} C_{R,K}}{A_\alpha} = 9.2 \times 10^{-6} \left(\frac{h\nu_\alpha}{9.8 \text{ keV}}\right)^3 \left(\frac{kT}{0.1 \text{ keV}}\right)$$

$$\frac{\omega_{K_\alpha} R_{R,K}}{A_\alpha} = 3.1 \times 10^{-3} \left(\frac{h\nu_\alpha}{9.8 \text{ keV}}\right)^{3/2} \left(\frac{kT}{0.1 \text{ keV}}\right)^{1/2}$$